[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$17000\\
r=rate\to 5\%\to \frac{5}{100}\to &0.05\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{quarterly, thus four}
\end{array}\to &4\\
t=years\to &6
\end{cases}
\\\\\\
A=17000\left(1+\frac{0.05}{4}\right)^{4\cdot 6}\implies A=17000(1.0125)^{24}[/tex]
the earned interest will then be A - P, namely A - 17000.