Respuesta :
We all know that a triangle has 180 degrees.
3x-8+5x-6+4x+2=180
12x-12=180
12x=180+12
12x=192
x=16.
∠A=2(16)+8=40
∠B= 90-16=74
∠C = 5(16) -14= 66
3x-8+5x-6+4x+2=180
12x-12=180
12x=180+12
12x=192
x=16.
∠A=2(16)+8=40
∠B= 90-16=74
∠C = 5(16) -14= 66
Answer:
[tex]\triangle ABC \sim \triangle A'B'C'[/tex]
Step-by-step explanation:
We are given the following information in the question:
[tex]\triangle ABC \sim \triangle A'B'C'[/tex]
[tex]\angle A = 3x - 8, \angle B = 5x - 6, \angle C = 4x + 2.[/tex]
[tex]\angle A' = 2x + 8, \angle B' = 90 - x, \angle C' = 5x - 14[/tex]
According to angle sum property of triangle the sum of all the three angles of triangle is 180.
[tex]\triangle ABC\\\angle A + \angle B + \angle C = 180^\circ\\3x -8+5x-6+4x+2 = 180\\12x-12 = 180\\12x = 192\\x = 16[/tex]
For the two triangles to be similar by AA criterion.
[tex]\angle A = \angle A'\\\angle B = \angle B'[/tex]
[tex]\angle A = 3x - 8 = 40\\\angle A' = 2x + 8 = 40\\\angle B = 5x - 6 = 74\\\angle B' = 90 - x = 74[/tex]
Thus, this confirms that the triangles are congruent.
[tex]\triangle ABC \sim \triangle A'B'C'[/tex]