Respuesta :
[tex]\bf \textit{arc's length}\\\\
s=\cfrac{\pi r\theta }{180}\quad
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad degrees\\
------\\
r=6\\
s=\frac{5\pi }{2}
\end{cases}\implies \cfrac{5\pi }{2}=\cfrac{\pi \cdot 6\cdot \theta }{180}\implies \cfrac{5\pi }{2}=\cfrac{\pi \theta }{30}
\\\\\\
\cfrac{5\underline{\pi }\cdot 30}{2\underline{\pi} }=\theta \implies 75=\theta[/tex]
Answer:
[tex]75\°[/tex]
Step-by-step explanation:
we know that
The circumference of a circle is equal to
[tex]C=2\pi r[/tex]
In this problem we have
[tex]r=6\ m[/tex]
substitute the value
[tex]C=2\pi (6)=12\pi\ m[/tex]
Remember that
[tex]360\°[/tex] subtends the complete circle of length arc [tex]12\pi\ m[/tex]
so
by proportion
Find the central angle for an arc length of [tex]\frac{5\pi}{2}\ m[/tex]
[tex]\frac{360}{12\pi}\frac{degrees}{m}=\frac{x}{\frac{5\pi}{2}}\frac{degrees}{m} \\ \\ x=(5/2)*360/12\\ \\x=75\°[/tex]