Respuesta :

AC and BC intercept each other at point E. So E is a point on BD.

Then BE + DE = BD. That gives us

[tex]BD = 2x^2-x+x^2+6=3x^2-x+6[/tex]

The answer is [tex]BD=3x^2-x+6[/tex]

Answer:

[tex] 3x^{2} -x +6[/tex]

Step-by-step explanation:

Given :

BE = [tex]2x^{2} -x[/tex]

DE = [tex]x^{2} +6[/tex]

To Find : Length of BD

Solution :

Refer the attached figure

Since AC and BD intersect at point E

We can see that BD = BE +DE

[tex]BD = 2x^{2} -x +(x^{2} +6)[/tex]

[tex]BD = 3x^{2} -x +6[/tex]

Thus , Length of BD is [tex] 3x^{2} -x +6[/tex]

Ver imagen wifilethbridge
ACCESS MORE
EDU ACCESS
Universidad de Mexico