Respuesta :
AC and BC intercept each other at point E. So E is a point on BD.
Then BE + DE = BD. That gives us
[tex]BD = 2x^2-x+x^2+6=3x^2-x+6[/tex]
The answer is [tex]BD=3x^2-x+6[/tex]
Then BE + DE = BD. That gives us
[tex]BD = 2x^2-x+x^2+6=3x^2-x+6[/tex]
The answer is [tex]BD=3x^2-x+6[/tex]
Answer:
[tex] 3x^{2} -x +6[/tex]
Step-by-step explanation:
Given :
BE = [tex]2x^{2} -x[/tex]
DE = [tex]x^{2} +6[/tex]
To Find : Length of BD
Solution :
Refer the attached figure
Since AC and BD intersect at point E
We can see that BD = BE +DE
[tex]BD = 2x^{2} -x +(x^{2} +6)[/tex]
[tex]BD = 3x^{2} -x +6[/tex]
Thus , Length of BD is [tex] 3x^{2} -x +6[/tex]
