Respuesta :
Let the coords of K be (x,y).
The midpoint is the average of the coords of the endpoint. So 8=(5+x)/2, making x=11. And 5=(-6+y)/2 making y=16.
So K is (11,16).
The midpoint is the average of the coords of the endpoint. So 8=(5+x)/2, making x=11. And 5=(-6+y)/2 making y=16.
So K is (11,16).
Answer:
(11,16)
Step-by-step explanation:
Hello
if you have two points , the midpoint is given by:
[tex]P1(x_{1},y_{1} )\\P2(x_{2},y_{2})\\\\Midpoint(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2})\\[/tex]
Step 1
Let
P1=J(5,-6)
Midpoint=M(8,5)
P2=k=?
[tex]Midpoint(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2})\\so\\\\M(8,5)=(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2})\\\\Hence\\8=\frac{x_{1}+x_{2}}{2}\ and\ 5=\frac{y_{1}+y_{2}}{2}\\now\ replacing\ P1\\\\\\P1=J(5,-6)\\x_{1}=5\\y_{1}=-6\\ 8=\frac{5+x_{2}}{2}\ \\\ 5=\frac{-6+y_{2}}{2}\\[/tex]
Step 2
solve for X(2)
[tex]8=\frac{5+x_{2}}{2}\ \\\ \\\\8*2=5+x_{2} \\16-5=x_{2} \\x_{2} =11[/tex]
Step 3
solve for y(2)
[tex]5=\frac{-6+y_{2}}{2}\\5*2=-6+y_{2}\\10+6=y_{2}\\y_{2}=16[/tex]
Hence the coordinates are
K(11,16)
Have a good day