Respuesta :

[tex] \left \{ {{4x+2y=18(1)} \atop {2x+3y=15(2)}} \right. [/tex]
Lets multiply equation (2) by -2 to get:
[tex]-4x-6y=-30[/tex]

Now we can add equations (1) and (2) to eliminate x:
[tex] \left \{ {{4x+2y=18}+ \atop {-4x-6y=-30}} \right. [/tex]
[tex]-4y=-12[/tex]
[tex]y= \frac{-12}{-4} [/tex]
[tex]y=3[/tex]
Now that we know the value of y, we can replace it in equation (1) to get the value of x:
[tex]4x+2(3)=18[/tex]
[tex]4x+6=18[/tex]
[tex]4x=12[/tex]
[tex]x= \frac{12}{3} [/tex]
[tex]x=3[/tex]

We can conclude that both x and y are equal to 3.

Answer:

x=3

y=3

Step-by-step explanation:

Given : [tex]4x+2y=18\\2x+3y=15[/tex]

To solve : Solution of system of equation

Solution :

[tex]4x+2y=18[/tex]  ---(a)

[tex]2x+3y=15[/tex] ---(b)

Since we are given that we have to solve these equation by elimination method :

Multiply equation (a) by 2 and equation (b) by 4

Then equation becomes:

[tex]8x+4y=36[/tex]  ---(a)

[tex]8x+12y=60[/tex] ---(b)

Subtract (a) from (b)

[tex]8x+12y-60-(8x+4y-36)=0[/tex]

[tex]8x+12y-60-8x-4y+36=0[/tex]

[tex]8y-24=0[/tex]

[tex]y=\frac{24}{8}[/tex]

[tex]y=3[/tex]

Now put this value in (b) to get value of x

[tex]8x+12(3)=60[/tex]

[tex]8x+36=60[/tex]

[tex]8x=60-36[/tex]

[tex]8x=24[/tex]

[tex]x=\frac{24}{8}[/tex]

[tex]x=3[/tex]

Thus the solution of this system of equations is x=3 and y=3


ACCESS MORE
EDU ACCESS
Universidad de Mexico