Respuesta :

If the original volumes of liquid is represented by x, we have x=x for A and B. Since 120mL is poured from A to B, A loses 120 mL (x-120) and B gains 120 mL (x+120). Since we know that B contains 4 times as much liquid as A is now (x-120), we have 4*(x-120)=(x+120)=B. Using the distributive property, we get 4x-480=x+120. Adding 480 to both sides, we get 4x=x+600. After that, we can subtract both sides by x to get 3x=600. Lastly, we can divide both sides by 3 to get x=200=the original amount of liquid. Since A=x-120, we get A=200-120=80
 
Space

Answer:

[tex]\displaystyle \nabla g(x, y, z) = \Big( 8y + 5z \Big) \hat{\i} + \Big( 8x + 5z \Big) \hat{\j} + \Big( 5y + 5x \Big) \hat{\text{k}}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Multivariable Calculus

Differentiation

  • Partial Derivatives
  • Derivative Notation

Gradient:                                                                                                             [tex]\displaystyle \nabla f(x, y, z) = \frac{\partial f}{\partial x} \hat{\i} + \frac{\partial f}{\partial y} \hat{\j} + \frac{\partial f}{\partial z} \hat{\text{k}}[/tex]

Gradient Property [Addition/Subtraction]:                                                          [tex]\displaystyle \nabla \big[ f(x) + g(x) \big] = \nabla f(x) + \nabla g(x)[/tex]

Gradient Property [Multiplied Constant]:                                                            [tex]\displaystyle \nabla \big[ \alpha f(x) \big] = \alpha \nabla f(x)[/tex]

Gradient Rule [Product Rule]:                                                                              [tex]\displaystyle \nabla \big[ f(x)g(x) \big] = f(x) \nabla g(x) + \nabla f(x) g(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle g(x, y, z) = 8xy + 5yz + 5xz[/tex]

Step 2: Find Gradient

  1. [Function] Differentiate [Gradient]:                                                              [tex]\displaystyle \nabla g(x, y, z) = \frac{\partial}{\partial x} \Big( 8xy + 5yz + 5xz \Big) \hat{\i} + \frac{\partial}{\partial y} \Big( 8xy + 5yz + 5zx \Big) \hat{\j} + \frac{\partial}{\partial z} \Big( 8xy + 5yz + 5zx \Big) \hat{\text{k}}[/tex]
  2. [Gradient] Rewrite [Gradient Property - Addition/Subtraction]:                [tex]\displaystyle \nabla g(x, y, z) = \Big[ \frac{\partial}{\partial x}(8xy) + \frac{\partial}{\partial x}(5yz) + \frac{\partial}{\partial x}(5xz) \Big] \hat{\i} + \Big[ \frac{\partial}{\partial y}(8xy) + \frac{\partial}{\partial y}(5yz) + \frac{\partial}{\partial y}(5zx) \Big] \hat{\j} + \Big[ \frac{\partial}{\partial z}(8xy) + \frac{\partial}{\partial z}(5yz) + \frac{\partial}{\partial z}(5zx) \Big] \hat{\text{k}}[/tex]
  3. [Gradient] Rewrite [Gradient Property - Multiplied Constants]:                [tex]\displaystyle \nabla g(x, y, z) = \Big[ 8 \frac{\partial}{\partial x}(xy) + 5 \frac{\partial}{\partial x}(yz) + 5 \frac{\partial}{\partial x}(xz) \Big] \hat{\i} + \Big[ 8 \frac{\partial}{\partial y}(xy) + 5 \frac{\partial}{\partial y}(yz) + 5 \frac{\partial}{\partial y}(zx) \Big] \hat{\j} + \Big[ 8 \frac{\partial}{\partial z}(xy) + 5 \frac{\partial}{\partial z}(yz) + 5 \frac{\partial}{\partial z}(zx) \Big] \hat{\text{k}}[/tex]
  4. [Gradient] Differentiate [Derivative Rule - Basic Power Rule]:                  [tex]\displaystyle \nabla g(x, y, z) = \Big( 8y + 5z \Big) \hat{\i} + \Big( 8x + 5z \Big) \hat{\j} + \Big( 5y + 5x \Big) \hat{\text{k}}[/tex]

∴ the gradient of the function is <8y + 5z, 8x + 5z, 5y + 5x>.

---

Learn more about gradients: https://brainly.com/question/6158243
Learn more about multivariable calculus: https://brainly.com/question/17433118

---

Topic: Multivariable Calculus

Unit: Directional Derivatives

ACCESS MORE