Respuesta :
Part 1A:
Given
[tex]x^3+x^2+4x+4=0 \\ \\ \Rightarrow x^2(x+1)+4(x+1)=0 \\ \\ \Rightarrow(x^2+4)(x+1)=0 \\ \\ \Rightarrow x= -1\ or\ x=\pm2i[/tex]
Part 1B:
Given
[tex]x^3+4x^2+x-6=0[/tex]
Using rational roots theorem, we can see that the possible roots of the the given equation are: [tex]\pm1,\ \pm2,\ \pm3,\ \pm6[/tex]
By substituting the possible roots, we can see that x = 1 is a root, thus x - 1 is a factor.
We can get the other factors by using sythetic division to divide [tex]x^3+4x^2+x-6[/tex] by x - 1.
1 | 1 4 1 -6
|
| 1 5 6
|_____________
1 5 6 0
Thus the other factor is [tex]x^2+5x+6=(x+2)(x+3)[/tex]
Therefore, all the roots of [tex]x^3+4x^2+x-6=0[/tex] are x = 1, x = -2 and x = -3.
Part 1C:
Given
[tex]x^4-4x^3+x^2+12x-12=0[/tex]
Using rational roots theorem, we can see that the possible roots of the the given equation are: [tex]\pm1,\ \pm2,\ \pm3,\ \pm4,\ \pm6,\ \pm12[/tex]
By substituting the possible roots, we can see that x = 2 is a root, thus x - 2 is a factor.
We can get the other factors by using sythetic division to divide [tex]x^4-4x^3+x^2+12x-12[/tex] by x - 2.
2 | 1 -4 1 12 -12
|
| 2 -4 -6 12
|____________________
1 -2 -3 6 0
Thus the other factor is [tex]2x^3-4x^2-6x+12[/tex]
Thus, we have
[tex]2x^3-4x^2-6x+12=0 \\ \\ \Rightarrow x^3-2x^2-3x+6=0 \\ \\ \Rightarrow x^2(x-2)-3(x-2)=0 \\ \\ \Rightarrow(x^2-3)(x-2)=0 \\ \\ \Rightarrow x=\pm\sqrt{3}\ or\ x=2[/tex]
Therefore, all the roots of [tex]x^4-4x^3+x^2+12x-12=0[/tex] are x = 2, [tex]x=\pm\sqrt{3}[/tex].
Part 2A:
Given
[tex]y=x^4-6x^2+8[/tex]
The zero of the function is when y = 0, thus we have
[tex]x^4-6x^2+8=0 \\ \\ \Rightarrow x^4-2x^2-4x^2+8=0 \\ \\ \Rightarrow x^2(x^2-2)-4(x^2-2)=0 \\ \\ \Rightarrow(x^2-4)(x^2-2)=0 \\ \\ \Rightarrow x=\pm2\ or\ x=\pm\sqrt{2}[/tex]
Part 2B:
Given
[tex]y=x^3+6x^2+x+6[/tex]
The zero of the funtion is when y = 0, thus we have
[tex]x^3+6x^2+x+6=0 \\ \\ \Rightarrow x^2(x+6)+1(x+6)=0 \\ \\ \Rightarrow(x^2+1)(x+6)=0 \\ \\ \Rightarrow x=\pm i\ or\ x=-6[/tex]
Part 2C:
Given
[tex]g(x)=x^3-4x^2-x+22[/tex]
Using rational zeros theorem, we can see that the possible zeros of the the given equation are: [tex]\pm1,\ \pm2,\ \pm11,\ \pm22[/tex]
By substituting the possible zeros, we can see that x = -2 is a zero, thus x + 2 is a factor.
We can get the other factors by using sythetic division to divide [tex]x^3-4x^2-x+22[/tex] by x + 2.
-2 | 1 -4 -1 22
|
| -2 12 -22
|____________________
1 -6 11 0
Thus the other factor is
[tex]-2x^2+12x-22=0\\ \\ \Rightarrow x^2-6x+11=0 \\ \\ \Rightarrow x= \frac{-(-6)\pm\sqrt{(-6)^2-4(11)}}{2} \\ \\ = \frac{6\pm\sqrt{-8}}{2} =\frac{6\pm2\sqrt{2}i}{2}=3\pm i\sqrt{2}[/tex]
Therefore, all the zeros of [tex]g(x)=x^3-4x^2-x+22[/tex] are x = -2, [tex]x=3\pm i\sqrt{2}[/tex].
Part 2D:
Given
[tex]y=x^4-x^3-5x^2-x-6[/tex]
Using rational zeros theorem, we can see that the possible zeros of the the given equation are: [tex]\pm1,\ \pm2,\ \pm3,\ \pm6[/tex]
By substituting the possible zeros, we can see that x = -2 is a zero, thus x + 2 is a factor.
We can get the other factors by using sythetic division to divide [tex]x^4-x^3-5x^2-x-6[/tex] by x + 2.
-2 | 1 -1 -5 -1 -6
|
| -2 6 -2 6
|____________________
1 -3 1 -3 0
Thus the other factor is
[tex]-2x^3+6x^2-2x+6=0 \\ \\ \Rightarrow x^3-3x^2+x-3=0 \\ \\ \Rightarrow x^2(x-3)+1(x-3)=0 \\ \\ \Rightarrow(x^2+1)(x-3)=0 \\ \\ \Rightarrow x=\pm i\ or\ x=3[/tex]
Therefore, all the zeros of [tex]y=x^4-x^3-5x^2-x-6[/tex] are x = -2, x = 3, [tex]x=\pm i[/tex].
Given
[tex]x^3+x^2+4x+4=0 \\ \\ \Rightarrow x^2(x+1)+4(x+1)=0 \\ \\ \Rightarrow(x^2+4)(x+1)=0 \\ \\ \Rightarrow x= -1\ or\ x=\pm2i[/tex]
Part 1B:
Given
[tex]x^3+4x^2+x-6=0[/tex]
Using rational roots theorem, we can see that the possible roots of the the given equation are: [tex]\pm1,\ \pm2,\ \pm3,\ \pm6[/tex]
By substituting the possible roots, we can see that x = 1 is a root, thus x - 1 is a factor.
We can get the other factors by using sythetic division to divide [tex]x^3+4x^2+x-6[/tex] by x - 1.
1 | 1 4 1 -6
|
| 1 5 6
|_____________
1 5 6 0
Thus the other factor is [tex]x^2+5x+6=(x+2)(x+3)[/tex]
Therefore, all the roots of [tex]x^3+4x^2+x-6=0[/tex] are x = 1, x = -2 and x = -3.
Part 1C:
Given
[tex]x^4-4x^3+x^2+12x-12=0[/tex]
Using rational roots theorem, we can see that the possible roots of the the given equation are: [tex]\pm1,\ \pm2,\ \pm3,\ \pm4,\ \pm6,\ \pm12[/tex]
By substituting the possible roots, we can see that x = 2 is a root, thus x - 2 is a factor.
We can get the other factors by using sythetic division to divide [tex]x^4-4x^3+x^2+12x-12[/tex] by x - 2.
2 | 1 -4 1 12 -12
|
| 2 -4 -6 12
|____________________
1 -2 -3 6 0
Thus the other factor is [tex]2x^3-4x^2-6x+12[/tex]
Thus, we have
[tex]2x^3-4x^2-6x+12=0 \\ \\ \Rightarrow x^3-2x^2-3x+6=0 \\ \\ \Rightarrow x^2(x-2)-3(x-2)=0 \\ \\ \Rightarrow(x^2-3)(x-2)=0 \\ \\ \Rightarrow x=\pm\sqrt{3}\ or\ x=2[/tex]
Therefore, all the roots of [tex]x^4-4x^3+x^2+12x-12=0[/tex] are x = 2, [tex]x=\pm\sqrt{3}[/tex].
Part 2A:
Given
[tex]y=x^4-6x^2+8[/tex]
The zero of the function is when y = 0, thus we have
[tex]x^4-6x^2+8=0 \\ \\ \Rightarrow x^4-2x^2-4x^2+8=0 \\ \\ \Rightarrow x^2(x^2-2)-4(x^2-2)=0 \\ \\ \Rightarrow(x^2-4)(x^2-2)=0 \\ \\ \Rightarrow x=\pm2\ or\ x=\pm\sqrt{2}[/tex]
Part 2B:
Given
[tex]y=x^3+6x^2+x+6[/tex]
The zero of the funtion is when y = 0, thus we have
[tex]x^3+6x^2+x+6=0 \\ \\ \Rightarrow x^2(x+6)+1(x+6)=0 \\ \\ \Rightarrow(x^2+1)(x+6)=0 \\ \\ \Rightarrow x=\pm i\ or\ x=-6[/tex]
Part 2C:
Given
[tex]g(x)=x^3-4x^2-x+22[/tex]
Using rational zeros theorem, we can see that the possible zeros of the the given equation are: [tex]\pm1,\ \pm2,\ \pm11,\ \pm22[/tex]
By substituting the possible zeros, we can see that x = -2 is a zero, thus x + 2 is a factor.
We can get the other factors by using sythetic division to divide [tex]x^3-4x^2-x+22[/tex] by x + 2.
-2 | 1 -4 -1 22
|
| -2 12 -22
|____________________
1 -6 11 0
Thus the other factor is
[tex]-2x^2+12x-22=0\\ \\ \Rightarrow x^2-6x+11=0 \\ \\ \Rightarrow x= \frac{-(-6)\pm\sqrt{(-6)^2-4(11)}}{2} \\ \\ = \frac{6\pm\sqrt{-8}}{2} =\frac{6\pm2\sqrt{2}i}{2}=3\pm i\sqrt{2}[/tex]
Therefore, all the zeros of [tex]g(x)=x^3-4x^2-x+22[/tex] are x = -2, [tex]x=3\pm i\sqrt{2}[/tex].
Part 2D:
Given
[tex]y=x^4-x^3-5x^2-x-6[/tex]
Using rational zeros theorem, we can see that the possible zeros of the the given equation are: [tex]\pm1,\ \pm2,\ \pm3,\ \pm6[/tex]
By substituting the possible zeros, we can see that x = -2 is a zero, thus x + 2 is a factor.
We can get the other factors by using sythetic division to divide [tex]x^4-x^3-5x^2-x-6[/tex] by x + 2.
-2 | 1 -1 -5 -1 -6
|
| -2 6 -2 6
|____________________
1 -3 1 -3 0
Thus the other factor is
[tex]-2x^3+6x^2-2x+6=0 \\ \\ \Rightarrow x^3-3x^2+x-3=0 \\ \\ \Rightarrow x^2(x-3)+1(x-3)=0 \\ \\ \Rightarrow(x^2+1)(x-3)=0 \\ \\ \Rightarrow x=\pm i\ or\ x=3[/tex]
Therefore, all the zeros of [tex]y=x^4-x^3-5x^2-x-6[/tex] are x = -2, x = 3, [tex]x=\pm i[/tex].