Respuesta :
Answer:
[tex]M(-2,-3)[/tex]
Step-by-step explanation:
We are asked to find the coordinates of point M, that is five-sixths of the distance from A(-7, 2) to B(-1, -4).
Since M is five-sixths of the distance from A to B, so it will divide A to B in ratio 5: 1.
Use section formula:
When a point P divides segment AB internally in ratio m:n, then coordinates of point P are:
[tex][x=\frac{mx_2+nx_1}{m+n},y=\frac{my_2+ny_1}{m+n}][/tex]
[tex][x=\frac{5\cdot -1+1\cdot -7}{5+1},y=\frac{5\cdot -4+1\cdot 2}{5+1}][/tex]
[tex][x=\frac{-5-7}{6},y=\frac{-20+2}{6}][/tex]
[tex][x=\frac{-12}{6},y=\frac{-18}{6}][/tex]
[tex][x=-2,y=-3][/tex]
Therefore, the coordinates of point M would be [tex](-2,-3)[/tex].