The population of a local species of beetle can be found using an infinite geometric series where a1 = 880 and the common ratio is one fourth. Write the sum in sigma notation, and calculate the sum (if possible) that will be the upper limit of this population.

Relax

Respuesta :

Data:

infinite geometric series

A1 = 880

r = 1 / 4

The sum of a geometric series  in sigma notation is:

  n              1 - r^n
 ∑ Ai = A ----------- ; where A = A1
i = 1             1-r

 When | r | < 1 the infinite sum exists and is equal to
:

  ∞               A
 ∑ Ai =   ---------- ; where A = A1
i = 1          1 - r


So, in this case
:

  ∞               880
 ∑ Ai =    -------------- = 4 * 880 / 3 = 3520 /3 = 1173 + 1/3
i = 1         1 - (1/4)
 


Answer: 1173 and 1/3