Respuesta :
A) y=1/2(2.5)^t/6 is the only growth function, the other two are for decay as the multipliers in the brackets are less than 1, thus indicating decay
C) 20(1.2)^4= 41 views
D) A and C as the multipliers in the brackets are less than 1, thus indicating decay
C) 20(1.2)^4= 41 views
D) A and C as the multipliers in the brackets are less than 1, thus indicating decay
Answer:
1) An exponential function,
[tex]y=ab^x[/tex] is called
Growth function : If b > 1
Decay function : if 0 < b < 1
Thus, the Growth function :
[tex]y=\frac{1}{2}(2.5)^\frac{1}{6}[/tex]
And, decay functions :
[tex]y=200(0.5)^{2t}[/tex] [tex]y=(0.65)^\frac{t}{4}[/tex]
2) Given equation,
[tex](\frac{1}{3})^{d-5}=81[/tex]
[tex](\frac{1}{3})^{d-5}=(3)^4[/tex]
[tex](\frac{1}{3})^{d-5}=(\frac{1}{3})^{-4}[/tex]
[tex]\implies d-5 = -4[/tex]
[tex]\implies -d+5=4[/tex]
Thus, Option 'D' is correct.
3) Given,
The initial number for blog, P = 20,
Rate per week, r = 20% = 0.2
So, the number of blocks after x weeks,
[tex]A=P(1+r)^x[/tex]
[tex]=20(1+0.2)^x[/tex]
[tex]=20(1.2)^x[/tex]
Hence, the number of blocks after 4 weeks,
[tex]A=20(1.2)^4=41.472\approx 41[/tex]
4) ∵ 0.55 < 1 and 0.20 < 1
so, the exponential decay functions,
A. [tex]y=0.55(0.91)^x[/tex]
C. [tex]y=2(0.20)^x[/tex]