[tex] -\frac{5}{6} [/tex] ÷ [tex] \frac{9}{10} [/tex] First, apply the rule (easiest way if you have learned it): [tex]a[/tex] ÷ [tex] \frac{b}{c} = a[/tex] × [tex] \frac{c}{b} [/tex] [tex]- \frac{5}{6} [/tex] × [tex] \frac{10}{9} [/tex] Second, apply the last rule: [tex] \frac{a}{b} [/tex] × [tex] \frac{c}{d} = \frac{ac}{bd} [/tex] [tex]- \frac{5*10}{6*9} [/tex] Third, multiply 5 × 10 to get 50. [tex]- \frac{50}{6*9} [/tex] Fourth, multiply 6 × 9 to get 54. [tex] -\frac{50}{54} [/tex] Fifth, find the GCF of 50 and 54. The GCF should be 2. Sixth, divide the numerator by the GCF. [tex]50 [/tex] ÷ [tex]2 = 25[/tex] Seventh, divide the denominator by the GCF. [tex]54[/tex] ÷ [tex]2 = 27[/tex] Eighth, now put 25 and 27 together to get the simplified fraction. [tex]- \frac{25}{27} [/tex]
Answer as fraction: [tex] -\frac{25}{27} [/tex] Answer as decimal: 0.9259