Respuesta :
It is 5, -3, [tex] \frac{1}{2} [/tex]
So B
I just took the test and got it correct!
So B
I just took the test and got it correct!
Answer: B) 5, −3, 1 over 2 are the zeros of f(x).
Step-by-step explanation:
Given function f(x)=[tex]2x^3-5x^2-28x+15[/tex]
If a is a zero of f(x) then f(a)=0
Let's check all the options
[tex]f(5)=2(5)^3-5(5)^2-28(5)+15\\=2(125)-5(25)-28(5)+15=250-125-140+15=0[/tex]
[tex]f(-3)=2(-3)^3-5(-3)^2-28(-3)+15\\=2(-27)-5(9)-28(-3)+15=-54-45+84+15=0[/tex]
[tex]f(\frac{-1}{2})=2\frac{-1}{2}()^3-5(\frac{-1}{2})^2-28(\frac{-1}{2})+15\\=2(\frac{-1}{8})-5(\frac{-1}{4})+14+15=\frac{-1}{4}-\frac{5}{4}+29=\frac{110}{4}=\frac{55}{2}\neq 0[/tex]
Therefore , 5 and -3 are zeroes of f(x).but -1/2 is not.
[tex]f(\frac{1}{2})=2\frac{1}{2}()^3-5(\frac{1}{2})^2-28(\frac{1}{2})+15\\=2(\frac{1}{8})-5(\frac{1}{4})-14+15=\frac{1}{4}-\frac{5}{4}-14+15=0[/tex]
⇒ 1/2 isthe third zero of f(x).
Here we got our three zeroes as 5,-3,1/2,rest other will not satisfy f(a)=0
Therefore B represents the zeroes of f(x).