Respuesta :

-7 and 2 are factors of -14, and they make a sum of -5, therefore:
(x^2-7)(x^2+2)=0
x^=7 or x^=-2
x=√7 or-√7, x=√2i or x=-√2i

We are given equation: [tex]x^4-5x^2-14 = 0[/tex].

Now, we need to find the solutions of the given equation.

We need to solve given equation by factoring.

[tex]\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4[/tex]

[tex]u^2-5u-14=0[/tex]

Let us factor the quadratic.

[tex]\mathrm{Break\:the\:expression\:into\:groups}[/tex]

[tex]=\left(u^2+2u\right)+\left(-7u-14\right)[/tex]

Factoring out GCF of each group.

[tex]=u\left(u+2\right)-7\left(u+2\right)[/tex]

[tex]\mathrm{Factor\:out\:common\:term\:}u+2[/tex]

[tex]=\left(u+2\right)\left(u-7\right)[/tex]

Substituting back [tex]u=x^2[/tex].

[tex]\left(x^2+2\right)\left(x^2-7\right)=0[/tex]

Applying zero product rule.

[tex]x^2+2=0[/tex]

[tex]x^2=-2[/tex]=>[tex]x=\sqrt{-2}[/tex][tex]=\sqrt{2}i, -\sqrt{2}i[/tex].

[tex]x^2-7=0[/tex]

[tex]x^2=7[/tex]=>[tex]x=\sqrt{7}[/tex][tex]=\sqrt{7}, -\sqrt{7}[/tex].

Therefore, solutions of the equation are:

[tex]\sqrt{2}i, -\sqrt{2}i,\sqrt{7}, -\sqrt{7}[/tex]