Respuesta :
let u=x^3
the original equation becomes: u^2-9u+8=0
factor this quadratic equation: (u-8)(u-1)=0
u=8, or u=1
that means x^3=8 or x^3=1
x=2 x=1
the original equation becomes: u^2-9u+8=0
factor this quadratic equation: (u-8)(u-1)=0
u=8, or u=1
that means x^3=8 or x^3=1
x=2 x=1
Answer:
[tex]x=1[/tex] and [tex]x=2[/tex]
Step-by-step explanation:
Let
[tex]u=x^{3}[/tex]
Remember that
If [tex]u=x^{3}[/tex]
then
[tex]u^{2}=x^{6}[/tex]
we have
[tex]x^{6} -9x^{3}+8=0[/tex]
Substitute
[tex]u^{2} -9u+8=0[/tex]
The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]u^{2} -9u+8=0[/tex]
so
[tex]a=1\\b=-9\\c=8[/tex]
substitute in the formula
[tex]u=\frac{9(+/-)\sqrt{(-9)^{2}-4(1)(8)}} {2(1)}[/tex]
[tex]u=\frac{9(+/-)\sqrt{49}} {2}[/tex]
[tex]u=\frac{9(+/-)7} {2}[/tex]
[tex]u=\frac{9+7} {2}=8[/tex]
[tex]u=\frac{9-7} {2}=1[/tex]
remember that
[tex]u=x^{3}[/tex]
so
for [tex]u=8[/tex]
[tex]8=x^{3}[/tex] -------> [tex]x=2[/tex]
for [tex]u=1[/tex]
[tex]1=x^{3}[/tex] -------> [tex]x=1[/tex]