What are the solutions of the equation x6 – 9x3 + 8 = 0? Use u substitution to solve. x = –1 and x = –2 x = 1 and x = 2

Respuesta :

let u=x^3
the original equation becomes: u^2-9u+8=0
factor this quadratic equation: (u-8)(u-1)=0
u=8, or u=1
that means x^3=8 or x^3=1
x=2  x=1

Answer:

[tex]x=1[/tex] and [tex]x=2[/tex]

Step-by-step explanation:

Let

[tex]u=x^{3}[/tex]

Remember that

If [tex]u=x^{3}[/tex]

then

[tex]u^{2}=x^{6}[/tex]

we have

[tex]x^{6} -9x^{3}+8=0[/tex]

Substitute

[tex]u^{2} -9u+8=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]u^{2} -9u+8=0[/tex]

so

[tex]a=1\\b=-9\\c=8[/tex]

substitute in the formula

[tex]u=\frac{9(+/-)\sqrt{(-9)^{2}-4(1)(8)}} {2(1)}[/tex]

[tex]u=\frac{9(+/-)\sqrt{49}} {2}[/tex]

[tex]u=\frac{9(+/-)7} {2}[/tex]

[tex]u=\frac{9+7} {2}=8[/tex]

[tex]u=\frac{9-7} {2}=1[/tex]

remember that

[tex]u=x^{3}[/tex]

so

for [tex]u=8[/tex]

[tex]8=x^{3}[/tex] -------> [tex]x=2[/tex]

for [tex]u=1[/tex]

[tex]1=x^{3}[/tex] -------> [tex]x=1[/tex]