Respuesta :

Alright, so I'll give you some general guidelines and challenge you to solve this on your own!

If we have a number x , a number z, and a number y, then 
[tex] x^{y^{z}} = x^{y * z} [/tex]
For example, 
[tex]2^{3^{4}} = 2^{3*4}=2^{12}[/tex]

Next, [tex]x^{y} * x^{z}=x^{y+z}[/tex] . For example, [tex]2^{3}*2^{4}=2^{3+4}=2^{7}[/tex]

Lastly, [tex] \frac{x^{y}}{x^{z}} =x^{y-z}[/tex] . For example, [tex] \frac{2^{3}}{2^{4}} =2^{3-4}=2^{-1}[/tex] . In this situation, note that a negative exponent means we have 1 over the actual positive exponent. For example, [tex]2^{-1}= \frac{1}{2^{1}} =1/2[/tex]

Please remember PEMDAS as well - 
P - Parenthesis
E- Exponents
M/D - Multiplication/Division
A/S - Addition/Subtraction
Go from top to bottom


Good luck, and feel free to ask any questions!