If [tex]X\sim\mathcal B(n,p)[/tex], that is, [tex]X[/tex] is a random variable following a binomial distribution across [tex]n[/tex] trials and success probability [tex]p[/tex], then the mean, variance, and standard deviation of the distribution are [tex]\mu=np[/tex], [tex]\sigma^2=np(1-p)[/tex], and [tex]\sigma=\sqrt{np(1-p)}[/tex], respectively.
(a) [tex]\mu=1.8,\sigma^2=0.72,\sigma\approx0.8485[/tex]
(b) [tex]\mu=4.2,\sigma^2=1.26,\sigma\approx1.1225[/tex]
(c) [tex]\mu=0.3,\sigma^2=0.27,\sigma\approx0.5196[/tex]
(d) [tex]\mu=2.8,\sigma^2=0.84,\sigma\approx0.9165[/tex]