Respuesta :
Answer:
[tex]y' = \frac{-x}{8}[/tex].
Step-by-step explanation:
The formula to find the equation of a parabola with the focus and the directrix is [tex](x-a)^{2}+b^{2}-c^{2}= 2(b-c)y[/tex] where (a,b) is the vertex and y=c is the directrix. So the equation is
[tex](x-0)^{2}+(-4)^{2}-4^{2}= 2(-4-4)y[/tex]
[tex]x^{2}+16-16= 2(-8)y[/tex]
[tex]x^{2}= -16y[/tex]
[tex]y = \frac{-x^{2}}{16}[/tex]
Then, the derivated equation is
[tex]y' = \frac{-2x}{16}[/tex]
[tex]y' = \frac{-x}{8}[/tex].