Respuesta :
the area of a rectangle is equal L x W
4 cm longer than it is wide L = 4 + W
L x W = 117 we replace L here
(4 + W ) x W = 117
4W + W ^2 = 117
4W + W ^2 -117 = 0
W ^2 +4 W -117 = 0
W² + 4W - 117 = 0
THEN u want to use the use the quadratic formula
OR Factoring gives us
(W + 13)(W - 9) = 0
W = -13 or 9
But it can't be negative, so
W = 9 and L= 9+4 = 13
4 cm longer than it is wide L = 4 + W
L x W = 117 we replace L here
(4 + W ) x W = 117
4W + W ^2 = 117
4W + W ^2 -117 = 0
W ^2 +4 W -117 = 0
W² + 4W - 117 = 0
THEN u want to use the use the quadratic formula
OR Factoring gives us
(W + 13)(W - 9) = 0
W = -13 or 9
But it can't be negative, so
W = 9 and L= 9+4 = 13
The length and width of the rectangle are [tex]13[/tex] cm and [tex]9[/tex] cm respectively whose area is [tex]117 cm^2[/tex].
Let the width of the rectangle be [tex]x[/tex].
Then the length of the rectangle is [tex]x+4[/tex].
Area of a rectangle [tex]=[/tex] length [tex]\times[/tex] width
Area [tex]= 117 cm^2[/tex]
[tex](x+4) \times x = 117[/tex]
[tex]x^2+4x=117[/tex]
[tex]x^2+4x-117=0[/tex]
[tex]x^2+13x-9x-117=0[/tex]
[tex]x(x+13)-9(x+13)=0[/tex]
[tex](x+13)(x-9)=0[/tex]
[tex]x+13=0, x-9=0[/tex]
[tex]x=-13, x=9[/tex]
Since, length cannot be negative. So, [tex]x=-13[/tex] is not possible.
So, [tex]x=9[/tex].
And [tex]x+4=13[/tex]
So, length [tex]= 13[/tex] cm and width [tex]= 9[/tex] cm.
Learn more here:
https://brainly.com/question/17337136?referrer=searchResults