Respuesta :

The remainder of this polynomial is 1. 
aachen

Answer:

1

Step-by-step explanation:

Given: A polynomial [tex]8x^{2} +4x-3[/tex] is divided by another polynomial [tex]2x-1[/tex]

To find: Remainder when [tex]8x^{2} +4x-3[/tex]  is divided by [tex]2x-1[/tex]

Solution:

To find the remainder when [tex]8x^{2} +4x-3[/tex]  is divided by [tex]2x-1[/tex]

First, equate [tex]2x-1[/tex] with 0.

Now, [tex]2x-1=0[/tex]

[tex]\implies2x=1[/tex]

[tex]\implies x=\frac{1}{2}[/tex]

Now, to find the remainder put [tex]x=\frac{1}{2}[/tex] in [tex]8x^{2} +4x-3[/tex]

So, we have

[tex]8\times(\frac{1}{2})^{2}+4(\frac{1}{2} )-3[/tex]

[tex]=8\times\frac{1}{4} +2-3[/tex]

[tex]=2+2-3[/tex]

[tex]=4-3[/tex]

[tex]=1[/tex]

Hence, the remainder is 1.