Respuesta :
Answer:
1
Step-by-step explanation:
Given: A polynomial [tex]8x^{2} +4x-3[/tex] is divided by another polynomial [tex]2x-1[/tex]
To find: Remainder when [tex]8x^{2} +4x-3[/tex] is divided by [tex]2x-1[/tex]
Solution:
To find the remainder when [tex]8x^{2} +4x-3[/tex] is divided by [tex]2x-1[/tex]
First, equate [tex]2x-1[/tex] with 0.
Now, [tex]2x-1=0[/tex]
[tex]\implies2x=1[/tex]
[tex]\implies x=\frac{1}{2}[/tex]
Now, to find the remainder put [tex]x=\frac{1}{2}[/tex] in [tex]8x^{2} +4x-3[/tex]
So, we have
[tex]8\times(\frac{1}{2})^{2}+4(\frac{1}{2} )-3[/tex]
[tex]=8\times\frac{1}{4} +2-3[/tex]
[tex]=2+2-3[/tex]
[tex]=4-3[/tex]
[tex]=1[/tex]
Hence, the remainder is 1.