Respuesta :
The measure of ∠SPQ in the rhombus PQRS, based on ∠ SPR = (2x+13)°, and ∠ QPR = (3x-12)°, is the sum of the two angles of ∠ SPR and ∠ QPR, which equal the whole or ∠ SPQ, in other words (2x+13)° + (3x-12)°.
Solution:
In a Rhombus The diagonals bisect the angles.
m∠SPR=m∠QPR
Substituting the given values :
2x+13=3x-12
Subtracting 2x both sides:
13=3x-2x-12
13=x-12
Adding 12 both sides:
x=25.
m∠SPR=2x+13=2(25)+13=50+13=63
m∠SPQ=2∠SPR
m∠SPQ=2m∠SPR
m∠SPQ=2x63=126
m∠SPQ= 126 degrees