Respuesta :
Answer:
[tex]\texttt{The rectangular coordinates of the point (-4, pi/3)}=(-2,-2\sqrt{3})[/tex]
Step-by-step explanation:
Conversion of parametric form of ( r , θ ) to rectangular coordinate can be done by using the formula ( rcosθ , rsinθ ).
Here we need to convert (-4, pi/3) in to rectangular coordinate form.
Which can be converted to rectangular coordinate form as
[tex]\left ( -4cos\left ( \frac{\pi}{3} \right),-4sin\left ( \frac{\pi}{3} \right)\right )=\left ( -4\times \left ( \frac{1}{2} \right),-4\times \left ( \frac{\sqrt{3}}{2} \right)\right )=(-2,-2\sqrt{3})[/tex]
[tex]\texttt{The rectangular coordinates of the point (-4, pi/3)}=(-2,-2\sqrt{3})[/tex]
The rectangular coordinates of the point (-4, pi/3) is:
- (-4, pi/3)= (-2, -2[tex]\sqrt{3}[/tex])
What is a Coordinate?
This refers to the system which is used to find out the position of points in a geometric element.
First of all, we have to convert to parametric form
- ( r , θ ) to rectangular coordinate with the use of the formula ( rcosθ , rsinθ ).
Next, we have to convert (-4, pi/3) in to rectangular coordinate form.
(-4 x (1/2), -4 x ([tex]\sqrt{3}[/tex]/2)) = n(-2, -2 [tex]\sqrt{3}[/tex])
After the conversion,
This would bring the rectangular coordinate form to:
- (-4, pi/3)= (-2, -2[tex]\sqrt{3}[/tex])
Read more about rectangular coordinates here:
https://brainly.com/question/2142816