The initial amount is 900, half of this is 450. So set the equation equal to 450 and solve for t.
[tex] 450=900e^{-0.002415t} \\ \\ \frac{450}{900} = e^{-0.002415t} [/tex]
Natural logarithm (ln) is base "e" Euler's number
[tex]ln( \frac{450}{900} = ln( e^{-0.002415t} ) \\ \\ln( \frac{450}{900} ) = -0.002415t \\ \\ \frac{ln( \frac{450}{900}) }{-0.002415} = t \\ \\ t = 287.0 yrs[/tex]