What is the quotient when −3x3 + 5x + 14 is divided by x − 2?
−3x2 − 6x − 7
− 3x2 − x + 12
−3x2 + 6x − 7 + 28 over the quantity of x minus 2
−3x2 − x + 12 + 28 over the quantity of x minus 2

Respuesta :

The answer is A. -3x2 - 6x - 7

Answer:

[tex]-3x^{2} -6x-7[/tex]

Step-by-step explanation:

The given expression is :

[tex]\frac{-3x^{3}+5x+14}{x-2}[/tex]

Factoring [tex]-3x^{3}+5x+14[/tex]

Factor out common term -1

[tex]3x^{3}-5x-14[/tex]

Now dividing leading coefficients of numerator and divisor.

[tex]\frac{3x^{3}}{x}=3x^{2}[/tex]

Multiplying x-2 with [tex]3x^{2}[/tex] = [tex]3x^{3}-6x^{2}[/tex]

Subtracting [tex]3x^{3}-6x^{2}[/tex] from [tex]3x^{3}-5x-14[/tex]

we get [tex]6x^{2} -5x-4[/tex]

Therefore, [tex]\frac{-3x^{3}+5x+14}{x-2}[/tex] = [tex]3x^{2} +\frac{6x^{2}-5x-14}{x-2}[/tex]

Now repeating these same steps until (x-2) is factored out, we get the quotient as :

[tex]-3x^{2} -6x-7[/tex]