Respuesta :
Answer:
[tex]-3x^{2} -6x-7[/tex]
Step-by-step explanation:
The given expression is :
[tex]\frac{-3x^{3}+5x+14}{x-2}[/tex]
Factoring [tex]-3x^{3}+5x+14[/tex]
Factor out common term -1
[tex]3x^{3}-5x-14[/tex]
Now dividing leading coefficients of numerator and divisor.
[tex]\frac{3x^{3}}{x}=3x^{2}[/tex]
Multiplying x-2 with [tex]3x^{2}[/tex] = [tex]3x^{3}-6x^{2}[/tex]
Subtracting [tex]3x^{3}-6x^{2}[/tex] from [tex]3x^{3}-5x-14[/tex]
we get [tex]6x^{2} -5x-4[/tex]
Therefore, [tex]\frac{-3x^{3}+5x+14}{x-2}[/tex] = [tex]3x^{2} +\frac{6x^{2}-5x-14}{x-2}[/tex]
Now repeating these same steps until (x-2) is factored out, we get the quotient as :
[tex]-3x^{2} -6x-7[/tex]