Respuesta :
I believe you have to factor 2a^3b^4 out of 16a^3b^7+2a^6b^4-22a^4b^5.
2a^3b^4(8b^3+a^3-11ab)
2a^3b^4(8b^3+a^3-11ab)
Answer:
[tex]2 a^3 b^4 (a^3 - 11 a b + 8 b^3)[/tex]
Step-by-step explanation:
The given expression is
[tex]16a^3b^7 + 2a^6b^4 -22a^4b^5[/tex]
We need to find the factored form of the given expression.
In the given expression [tex]2 a^3 b^4[/tex] is the greatest common factor of all terms.
Taking GCF we get.
[tex]2 a^3 b^4 (8 b^3+a^3 - 11 a b)[/tex]
In can be written as
[tex]2 a^3 b^4 (a^3 - 11 a b + 8 b^3)[/tex]
This expression is the complete factored form of the given expression because [tex]a^3 - 11 a b + 8 b^3[/tex] can not be factored further.
Therefore, the factor form of given expression is [tex]2 a^3 b^4 (a^3 - 11 a b + 8 b^3)[/tex].