Classify the substances according to the strongest solute-solvent interaction that will occur between the given substances and water during dissolution. please match. 1. ion-dipole forces 2. dipole-dipole forces 3. hydrogen bonding 4. london dispersion forces
A. AlCl3
B. FeBr3
C. NH3
D. C2H5OH

Respuesta :

Answer: [tex]NH_3[/tex] and [tex]C_2H_5OH[/tex] are hydrogen boding, [tex]AlCl_3[/tex] and [tex]FeBr_3[/tex] are ion-dipole forces.

Explanation: If the bond is formed between a metal and a non metal then it is known as ionic bond and ionic compounds have positive and negative ions and so they have ion-dipole forces. Aluminium chloride and Iron(III)bromide both are ionic as they have a bond between a metal and non metal and so both of these have ion-dipole forces.

Ammonia and ethanol both are polar molecules and we know that polar molecules have dipole-dipole forces.

A hydrogen bond could form if hydrogen is bonded with more electron negative atom(N, O or F).

In ammonia, H is bonded to N and in ethanol, H is bonded to O, so both of these molecules must have hydrogen bonding. Since hydrogen bond is stronger as compared to dipole - dipole forces, we will say that both ammonia and ethanol have hydrogen bonding.

Answer: [tex]AlCl_3[/tex] and [tex]FeBr_3[/tex]  have ion-dipole interactions.

[tex]NH_3[/tex] and [tex]C_2H_5OH[/tex] have hydrogen bonding.  

Explanation:

[tex]AlCl_3[/tex] and [tex]FeBr_3[/tex] have ion-dipole interactions.[tex]NH_3[/tex] and [tex]C_2H_5OH[/tex] have dipole-dipole forces. ‘H’ atom is bonded to ‘N’ in ammonia and ‘H’ atom is bonded to ‘O’ in ethanol, therefore; both ammonia and ethanol must have hydrogen bonding. Hydrogen bond is stronger with compared to dipole-dipole forces, hence; hydrogen bond gets the priority than dipole-dipole forces.

Further explanation:

Inter molecular forces are the physical forces between molecules.    

London dispersion forces are occurring between two non-polar molecules and these are the weakest inter molecular forces of the inter molecular forces.  

Dipole-dipole forces are occurs between two polar molecules. Many molecules are polar and hence this is a common inter molecular force.  

Ion-dipole forces occur when an ion encounters a polar molecule.  A cation will attract to the negative part of the molecule and an anion will attract to the positive part of the molecule.  

Hydrogen bonds are the attraction of molecules which are already in other chemical bonds and these types of bonds are primary electrostatic force.  

Ammonia [tex](NH_3)[/tex] is a polar molecule. Ethanol [tex](C_2H_5OH)[/tex] is a very polar molecule. [tex]AlCl_3[/tex] and [tex]FeBr_3[/tex] are ionic compounds and dissociate to give ions.

Hence [tex]AlCl_3[/tex] and [tex]FeBr_3[/tex] have ion-dipole interactions.  

[tex]NH_3[/tex] and [tex]C_2H_5OH[/tex]  have dipole-dipole forces. ‘H’ atom is bonded to ‘N’ in ammonia and  ‘H’ atom is bonded to ‘O’ in ethanol, therefore; both ammonia and ethanol must have hydrogen bonding. Hydrogen bond is stronger with compared to dipole-dipole forces, hence; hydrogen bond gets the priority than dipole-dipole forces.

Learn more:

1. Intermolecular forces : https://brainly.com/question/13159906 (answer by lucic)

2. London dispersion forces: https://brainly.com/question/13188977  ( answer by Tirana)

3. Hydrogen bonding : https://brainly.com/question/2161098 (answer by Jamuuj)

Keywords:

Intermolecular forces, London dispersion forces, Dipole-dipole forces, Ion-dipole forces, Hydrogen bonds

ACCESS MORE