Respuesta :

Lagrangian:

[tex]L(x,y,z,\lambda)=3(x+y+z)+\lambda(x^2+y^2+z^2-1)[/tex]

Set partial derivative equal to 0 and look for critical points:

[tex]L_x=3+2\lambda x=0[/tex]
[tex]L_y=3+2\lambda y=0[/tex]
[tex]L_z=3+2\lambda z=0[/tex]
[tex]L_\lambda=x^2+y^2+z^2-1=0[/tex]

[tex]xL_x+yL_y+zL_z=3(x+y+z)+2\lambda(x^2+y^2+z^2)=0[/tex]
[tex]3(x+y+z)+2\lambda=0[/tex]

We require [tex]\lambda\neq0[/tex], so we find that

[tex]L_x-L_y=2\lambda(x-y)=0\implies x=y[/tex]
[tex]L_y-L_z=2\lambda(y-z)=0\implies y=z[/tex]
[tex]L_x-L_z=2\lambda(x-z)=0\implies x=z[/tex]

[tex]3(3x)+2\lambda=9x+2\lambda=0[/tex]

[tex]\begin{cases}9x+2\lambda=0\\3+2\lambda x=0\end{cases}\implies2\lambda=-9x[/tex]
[tex]\implies 3+(-9x)x=3-9x^2=0\implies x=\pm\dfrac1{\sqrt3}[/tex]

which means there are two possible critical points, [tex]\left(\dfrac1{\sqrt3},\dfrac1{\sqrt3},\dfrac1{\sqrt3}\right)[/tex] and [tex]\left(-\dfrac1{\sqrt3},-\dfrac1{\sqrt3},-\dfrac1{\sqrt3}\right)[/tex]. It's clear enough that the first gives a maximum value of [tex]f\left(\dfrac1{\sqrt3},\dfrac1{\sqrt3},\dfrac1{\sqrt3}\right)=3\sqrt3[/tex], and a minimum value of [tex]f\left(-\dfrac1{\sqrt3},-\dfrac1{\sqrt3},-\dfrac1{\sqrt3}\right)=-3\sqrt3[/tex].
ACCESS MORE
EDU ACCESS