Parameterize the part of the sphere by
[tex]\mathbf s(u,v)=(9\cos u\sin v,9\sin u\sin v,9\cos v)[/tex]
with [tex]0\le u\le2\pi[/tex] and [tex]0\le v\le\dfrac\pi4[/tex]. Then
[tex]\mathrm dS=\|\mathbf s_u\times\mathbf s_v\|=81\sin v\,\mathrm du\,\mathrm dv[/tex]
So the area of [tex]S[/tex] (the part of the sphere above the cone) is given by
[tex]\displaystyle\iint_S\mathrm dS=81\int_{v=0}^{v=\pi/4}\int_{u=0}^{u=2\pi}\sin v\,\mathrm du\,\mathrm dv=81(2\pi)\left(1-\dfrac1{\sqrt2}\right)=(162-81\sqrt2)\pi[/tex]