Let [tex]x[/tex] equals to amount charged for downloading individual songs [tex]\Rightarrow[/tex] [tex]y[/tex] equals to amount charged for downloading an entire album.
Solve the system for [tex]y[/tex]:
[tex]\left\{{{6x+2y = 25.92,}\atop{4x + 3y = 33.93;}}\right \left\{{{6x+2y = \frac{648}{25},}\atop{4x + 3y = \frac{3393}{100};}}\right
\\\left\{{{6x+2y-2y = \frac{648}{25}-2y,}\atop{4x + 3y = \frac{3393}{100};}}\right \left\{{{6x = \frac{648}{25}-2y,}\atop{4x + 3y = \frac{3393}{100};}}\right
\\\left\{{{x = \frac{-25y+324}{75},}\atop{4x + 3y = \frac{3393}{100};}}\right \left\{{{x = \frac{-25y+324}{75},}\atop{4\frac{-25y+324}{75} + 3y = \frac{3393}{100};}}\right[/tex]
[tex]\left\{{{x = \frac{-25y+324}{75},}\atop{\frac{4(-25y+324)}{75} * 300 + 3y * 300 = \frac{3393}{100} * 300;}}\right \left\{{{x = \frac{-25y+324}{75},}\atop{16(-25y+324)+900y = 10179;}}\right
\\\left\{{{x = \frac{-25y+324}{75},}\atop{500y+5184 = 10179;}}\right \left\{{{x = \frac{-25y+324}{75},}\atop{500y = 4995;}}\right
\\\left\{{{x = \frac{-25y+324}{75},}\atop{y = \frac{999}{100} = 9.99;}}\right[/tex]
Solving the system for [tex]x[/tex] is unoptional since we already have the answer we've been looking for. Your answer is [tex]9.99\$[/tex].