Respuesta :
Answer:
f(x) intersect the x-axis ate ( 4 , 0 ) and ( -1/3 , 0)
Step-by-step explanation:
Given function, [tex]f(x)=3x^2-11x-4[/tex]
We need to find this function cuts x-axis at what point.
let, [tex]y=3x^2-11x-4[/tex]
We know that points on x-axis has y-coordinate equal to 0.
So, we put y = 0 to find value of x.
By putting y = 0, we get
[tex]0=3x^2-11x-4[/tex]
[tex]3x^2-11x-4=0[/tex]
solving by quadratic formula,
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{-(-11)\pm\sqrt{(-11)^2-4\times3\times(-4)}}{2\times3}[/tex]
[tex]x=\frac{11\pm\sqrt{121+48}}{6}[/tex]
[tex]x=\frac{11\pm\sqrt{169}}{6}[/tex]
[tex]x=\frac{11\pm13}{6}[/tex]
[tex]x=\frac{11+13}{6}\:\:and\:\:x=\frac{11-13}{6}[/tex]
[tex]x=\frac{24}{6}\:\:and\:\:x=\frac{-2}{6}[/tex]
[tex]x=4\:\:and\:\:x=\frac{-1}{3}[/tex]
Therefore, f(x) intersect the x-axis ate ( 4 , 0 ) and ( -1/3 , 0)