We can model the problem using a right angle triangle.
The two sides, AB and BC are equal
By Pythagoras, we find the length of AC = [tex] \sqrt{1^+1^} [/tex] = [tex] \sqrt{2} [/tex]
Using the sin ratio ⇒ sin θ = opposite/hypotenuse, we have
[tex]sin(45)= \frac{1}{ \sqrt{2} }= \frac{ \sqrt{2} }{2} [/tex]
Using the cos ratio ⇒ cos θ = adjective/hypotenuse, we have
[tex]cos(45)= \frac{1}{ \sqrt{2} }= \frac{ \sqrt{2} }{2} [/tex]
Using the tan ratio ⇒ tan θ = opposite/adjective, we have
[tex]tan(45)= \frac{1}{1}=1 [/tex]