The sides of an equilateral triangle are increasing at a rate of 10 cm/min. at what rate is the area of the triangle increasing when the sides are 30 cm long?

Respuesta :

Area of a triangle is given by

[tex]Area= \frac{1}{2} ab\sin C= \frac{1}{2} s^2\sin C[/tex]

Since the sides of an equilateral triangle are equal.

Differentiating the area of the triangle, we have:

[tex] \frac{dA}{dt} = \frac{dA}{ds} \cdot \frac{ds}{dt} =(s\sin C) \frac{ds}{dt} [/tex]

where

[tex] \frac{ds}{dt} =10\,cm/min \\ s=30 \, cm[/tex]

[tex]\therefore \frac{dA}{dt} =(30\sin60)\times10=300\sin60=259.8\, cm^2/min[/tex]

Therefore, the rate is the area of the triangle increasing when the sides are 30 cm long is 259.8 cm^2 / min
ACCESS MORE