Area of a triangle is given by
[tex]Area= \frac{1}{2} ab\sin C= \frac{1}{2} s^2\sin C[/tex]
Since the sides of an equilateral triangle are equal.
Differentiating the area of the triangle, we have:
[tex] \frac{dA}{dt} = \frac{dA}{ds} \cdot \frac{ds}{dt} =(s\sin C) \frac{ds}{dt} [/tex]
where
[tex] \frac{ds}{dt} =10\,cm/min \\ s=30 \, cm[/tex]
[tex]\therefore \frac{dA}{dt} =(30\sin60)\times10=300\sin60=259.8\, cm^2/min[/tex]
Therefore, the rate is the area of the triangle increasing when the sides are 30 cm long is 259.8 cm^2 / min