Respuesta :

Answer:

[tex]\log _3\left(81\right)=4[/tex]

Step-by-step explanation:

Given : [tex]\log _3\left(81\right)[/tex]

We have to find the value of [tex]\log _3\left(81\right)[/tex]

Consider [tex]\log _3\left(81\right)[/tex]

Rewrite 81 in base power form, [tex]81=3^4[/tex]

[tex]=\log _3\left(3^4\right)[/tex]

[tex]\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)[/tex]

We have,

[tex]\log _3\left(3^4\right)=4\log _3\left(3\right)[/tex]

[tex]=4\log _3\left(3\right)[/tex]

[tex]\mathrm{Apply\:log\:rule}:\quad \log _a\left(a\right)=1[/tex]

[tex]\log _3\left(3\right)=1[/tex]

[tex]=4\log _3\left(3\right)=4[/tex]

Thus,  [tex]\log _3\left(81\right)=4[/tex]

4

Further explanation

Now, we will solve the problem of the logarithm.

Some logarithmic properties used this time are as follows:

[tex]\boxed{ \ \log_{a} a = 1 \ }[/tex]

[tex]\boxed{ \ \log_{a}b^c = c \log_a b \ }[/tex]

Let us calculate the value of [tex]\boxed{ \ \log_3 81 \ }[/tex]

Recall that [tex]\boxed{ \ 81 = 3^4. \ }[/tex]

[tex]\boxed{ \ \log_3 81 = \log_3 3^4 \ }[/tex]

[tex]\boxed{ \ \log_3 81 = 4 \log_3 3 \ }[/tex]

[tex]\boxed{ \ \log_3 81 = 4 \times 1 \ }[/tex]

Thus, the result is [tex]\boxed{\boxed{ \ \log_3 81 = 4 \ }}[/tex]

- - - - - - -

Alternative problem:

What is the value of [tex]\boxed{ \ \log_{81} 3 \ ? \ }[/tex]

Recall that [tex]\boxed{ \ 3 \rightarrow (3^4)^{\frac{1}{4}} \rightarrow 81^{\frac{1}{4}}. \ }[/tex]

[tex]\boxed{ \ \log_{81} 3 = \log_{81} 81^{\frac{1}{4}} \ }[/tex]

[tex]\boxed{ \ \log_{81} 3 = \frac{1}{4} \log_{81} 81 \ }[/tex]

[tex]\boxed{ \ \log_{81} 3 = \frac{1}{4} \times 1 \ }[/tex]

Thus, the result is [tex]\boxed{\boxed{ \ \log_{81} 3 = \frac{1}{4} \ }}[/tex]

- - - - - - -

Notes:

The relationship between logarithms and exponents is as follows:

[tex]\boxed{ \ \log_{a}b = c \ } \leftrightarrow \boxed{ \ a^c = b \ }[/tex]

  • a = base of logarithm
  • b = numerous
  • c = the result of logarithm
  • [tex]\boxed{ \ a > 0, \ b > 0, \ a \neq 1 \ }[/tex]
  • logarithmic functions and exponential functions are inverses each other.

Learn more

  1. What's 49 to the power of ¹/₂?  https://brainly.com/question/46691
  2. Calculating the pH value of weak base https://brainly.com/question/9040743
  3. The inverse of a function https://brainly.com/question/3225044

Keywords: what is the value of log3 81, logarithmic properties, base, numerous, exponential functions, inverses each other