contestada

A pyramid has a regular hexagonal base with side lengths of 4 and a slant height of 6. Find the total area of the pyramid. T. A. =

Respuesta :

Answer:

[tex](24\sqrt{3}+72)\text{ square unit}[/tex]

Step-by-step explanation:

Since, the area of a regular hexagon is,

[tex]A=\frac{3\sqrt{3}}{2}a^2[/tex]

Where, a is the side of the hexagon,

Here, the base of the pyramid is a regular hexagon having side length,

a = 4 unit,

Thus, the base area of the pyramid is,

[tex]A_B=\frac{3\sqrt{3}}{2}(4)^2[/tex]

[tex]=\frac{48\sqrt{3}}{2}[/tex]

[tex]=24\sqrt{3}\text{ square unit}[/tex]

Now, the lateral face of the pyramid is a triangle having base = 4 unit and height = 6 unit,

Also, a hexagonal pyramid has 6 triangular faces,

So, the total lateral area of the pyramid is,

[tex]A_L=6\times \frac{1}{2}\times 4\times 6[/tex]

[tex]=\frac{144}{2}[/tex]

[tex]=72\text{ square unit}[/tex]

Hence, the total area of the pyramid is,

[tex]T.A.=A_B+A_L[/tex]

[tex]=(24\sqrt{3}+72)\text{ square unit}[/tex]

Answer:

[tex]24\sqrt3+72[/tex] Square units

Step-by-step explanation:

We are given that a pyramid which has a regular hexagonal base.

Side length of hexagonal base=Base of triangular face=4 units

Height of triangle=6 units

We have to find total area of the pyramid.

The total area of pyramid=[tex]A_B+A_L[/tex]

Where [tex]A_B[/tex]=Base area

[tex]A_L[/tex]=Lateral area

Area of hexagonal base=[tex]\frac{3\sqrt3}{2}a^2[/tex]

Where a= Side length

Now, area of hexagonal  base=[tex]\frac{3\sqrt3}{2}(4)^2=24\sqrt3[/tex] square units

Area of triangular face=[tex]\frac{1}{2}\times base\times height=\frac{1}{2}\times 6\times 4=12[/tex] square units

In pyramid , there are 6 triangular faces.

Therefore, lateral area of pyramid=[tex]6\times 12=72[/tex] square units

Substitute the values in the given formula then, we get

Total lateral area of given pyramid=[tex]24\sqrt3+72[/tex] Square units