the three inside angles (A, B, C) of a right angled triangle are in the ratio 7:18:11. The smallest angle is 35 degrees. Work out the angle A, B,C

Respuesta :

sum of interior angles of a triangle = 180
ratio 7:18:11 
so
7+18+11 = 36

180 / 36 = 5

7 x 5 = 35
18 x 5 = 90
11 x 5 = 55

answer
measures of right triangles are 35, 90 and 55

The three inside angles (A, B, C) of a right angled triangle are [tex]\rm \angle A = 35^\circ[/tex] which is the smallest angle, [tex]\rm \angle B = 90^\circ[/tex] which is the right angle and [tex]\rm \angle C = 55^\circ[/tex] which is the third angle of the triangle.

Given :

  • [tex]\rm \angle A :\angle B:\angle C = 7:18:11[/tex]
  • Smallest angle = [tex]35^\circ[/tex]

To solve this kind of problems first let x be in degree. So, angle A, angle B and angle C beecomes:

[tex]\rm \angle A = 7x[/tex]    -----  (1)

[tex]\rm \angle B = 18x[/tex]  ----- (2)

[tex]\rm \angle C = 11x[/tex]   ----- (3)

From the properties of triangle, the sum of interior angles of a triangle is [tex]180^\circ[/tex].

[tex]\rm \angle A +\angle B+\angle C = 180^\circ[/tex]  --- (4)

Now, put the values of [tex]\rm \angle A,\;\angle B,\;and \; \angle C[/tex] in equation (4).

[tex]7x+18x+11x=180^\circ[/tex]

[tex]36x = 180^\circ[/tex]

[tex]x = 5[/tex]

Now, put the value of x in equation (1), (2) and (3).

[tex]\rm \angle A = 7\times 5 = 35^\circ[/tex]

[tex]\rm \angle B = 18\times5 = 90^\circ[/tex]

[tex]\rm \angle C = 11\times5=55^\circ[/tex]

The three inside angles (A, B, C) of a right angled triangle are [tex]\rm \angle A = 35^\circ[/tex] which is the smallest angle, [tex]\rm \angle B = 90^\circ[/tex] which is the right angle and [tex]\rm \angle C = 55^\circ[/tex] which is the third angle of the triangle.

For more information, refer the link given below

https://brainly.com/question/3430995