Respuesta :

radius=2
center(-2,4)

Answer:  The required center of the given circle is 2 units.

Step-by-step explanation:  We are given to find the radius of a circle with the following equation:

[tex]x^2+y^2+8x-6y+21=0~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

The standard equation of a CIRCLE with radius 'r' units and center at the point (h, k) is given by

[tex](x-h)^2+(y-k)^2=r^2.[/tex]

From equation (i), we have

[tex]x^2+y^2+8x-6y+21=0\\\\\Rightarrow (x^2+8x+16)+(y^2-6y+9)-16-9+21=0\\\\\Rightarrow (x^2+2\times x\times 4+4^2)+(y^2-2\times x\times 3+3^2)-4=0\\\\\Rightarrow (x+4)^2+(y-3)^2=4\\\\\Rightarrow (x-(-4))^2+(y-3)^2=2^2.[/tex]

Comparing the above equation with the standard equation (i), we get

radius, r = 2 units  and  center, (h, k) = (-4, 3).

Thus, the required center of the given circle is 2 units.