[tex]\bf \textit{Amount of Population Growth}\\\\
A=Ie^{rt}\qquad
\begin{cases}
A=\textit{accumulated amount}\\
I=\textit{initial amount}\\
r=rate\to r\%\to \frac{r}{100}\\
t=\textit{elapsed time}\\
\end{cases}[/tex]
a)
so, if the population doubled in 5 years, that means t = 5. So say, if we use an amount for "i" or P in your case, to be 1, then after 5 years it'd be 2, and thus i = 1 and A = 2, let's find "r" or "k" in your equation.
[tex]\bf \textit{Amount of Population Growth}\\\\
A=Ie^{rt}\qquad
\begin{cases}
A=\textit{accumulated amount}\to &2\\
I=\textit{initial amount}\to &1\\
r=rate\\
t=\textit{elapsed time}\to &5\\
\end{cases}
\\\\\\
2=1\cdot e^{5r}\implies 2=e^{5r}\implies ln(2)=ln(e^{5r})\implies ln(2)=5r
\\\\\\
\boxed{\cfrac{ln(2)}{5}=r}\qquad therefore\qquad \boxed{A=e^{\frac{ln(2)}{5}\cdot t}} \\\\\\
\textit{how long to tripling?}\quad
\begin{cases}
A=3\\
I=1
\end{cases}\implies 3=1\cdot e^{\frac{ln(2)}{5}\cdot t}[/tex]
[tex]\bf 3=e^{\frac{ln(2)}{5}\cdot t}\implies ln(3)=ln\left( e^{\frac{ln(2)}{5}\cdot t} \right)\implies ln(3)=\cfrac{ln(2)}{5} t
\\\\\\
\cfrac{5ln(3)}{ln(2)}=t\implies 7.9\approx t[/tex]
b)
A = 10,000, t = 3
[tex]\bf \begin{cases}
A=10000\\
t=3
\end{cases}\implies 10000=Ie^{\frac{ln(2)}{5}\cdot 3}\implies \cfrac{10000}{e^{\frac{3ln(2)}{5}}}=I
\\\\\\
6597.53955 \approx I[/tex]