Respuesta :
Answer:
The factored form of [tex]4a^3b^5-16a^5b^2+12a^2b^3[/tex] is [tex]4a^2b^2\left(ab^3-4a^3+3b\right)[/tex].
Step-by-step explanation:
To find the factored form of [tex]4a^3b^5-16a^5b^2+12a^2b^3[/tex] you must:
Apply exponent rule: [tex]a^{b+c}=a^ba^c[/tex]
[tex]a^2b^3=a^2b^2b,\:a^5b^2=a^2a^3b^2,\:a^3b^5=a^2ab^2b^3[/tex]
So, we can write our expression as [tex]4a^2ab^2b^3-16a^2a^3b^2+12a^2b^2b[/tex].
Next, rewrite 12 as [tex]3\cdot \:4[/tex] and -16 as [tex]4\cdot \:4[/tex]
[tex]4a^2ab^2b^3+4\cdot \:4a^2a^3b^2+3\cdot \:4a^2b^2b[/tex]
Factor out common term: [tex]4a^2b^2[/tex]
Therefore,
[tex]4a^3b^5-16a^5b^2+12a^2b^3= 4a^2b^2\left(ab^3-4a^3+3b\right)[/tex]