Respuesta :

4a^2b^2(ab^3-4a^3+3b)

Answer:

The factored form of [tex]4a^3b^5-16a^5b^2+12a^2b^3[/tex] is [tex]4a^2b^2\left(ab^3-4a^3+3b\right)[/tex].

Step-by-step explanation:

To find the factored form of [tex]4a^3b^5-16a^5b^2+12a^2b^3[/tex] you must:

Apply exponent rule: [tex]a^{b+c}=a^ba^c[/tex]

[tex]a^2b^3=a^2b^2b,\:a^5b^2=a^2a^3b^2,\:a^3b^5=a^2ab^2b^3[/tex]

So, we can write our expression as [tex]4a^2ab^2b^3-16a^2a^3b^2+12a^2b^2b[/tex].

Next, rewrite 12 as [tex]3\cdot \:4[/tex] and -16 as [tex]4\cdot \:4[/tex]

[tex]4a^2ab^2b^3+4\cdot \:4a^2a^3b^2+3\cdot \:4a^2b^2b[/tex]

Factor out common term: [tex]4a^2b^2[/tex]

Therefore,

[tex]4a^3b^5-16a^5b^2+12a^2b^3= 4a^2b^2\left(ab^3-4a^3+3b\right)[/tex]