JVascoe
contestada

Use cos(t) and sin(t), with positive coefficients, to parametrize the intersection of the surfaces x^2+y^2=81 and z=5x^4.

Respuesta :

jbmow
x = 9cos(t)
y = 9sin)t)
z =5[9cos(t)]^4

Answer:

[tex]s(t)=(9 cost,9 sint , 32805 cos^4 t) , t\in (0,2\pi)[/tex]

Step-by-step explanation:

We are given that two surfaces

[tex]x^2+y^2=81[/tex]

and [tex]z=5x^4[/tex]

We have to find the parametrize the intersection of the given surfaces using cost and sin t with positive coefficient.

We know that intersection curve S(t) is given by

S(t)=(x(t),y(t),z(t)),[tex]t\in(0,2\pi)[/tex]

[tex]x^2+y^2=(9)^2[/tex]

Compare with the equation of circle [tex](x-h)^2+(y-k)^2=r^2[/tex]

Where (h,k) is center of circle and r is the radius of the circle.

The center and radius of given circle is (0,0) and 9.

[tex]x=9cost,y=9 sint[/tex]

because cost  takes along x - axis and sin t takes along y- axis.

When we substitute these values then we get

[tex]81cos^2t+81sin^2t=81(cos^2t+sin^2t)=81 [/tex] ([tex]sin^2t+cos^2t)=1[/tex])

Hence, [tex]x=9 cost, y= 9sint [/tex]

Substitute the value of x in second equation of surface

[tex]z=5(9cost)^4=32805 cos^4t[/tex]

Hence, the intersection curve s(t) is given by

[tex]s(t)=(9 cost,9 sint , 32805 cos^4 t) , t\in (0,2\pi)[/tex]