Respuesta :
[tex]\dfrac{\mathrm dX}{\mathrm dt}=k(a-X)(B-X)[/tex]
(a) We're given that [tex]0<a<B[/tex]. We have four cases to consider: (1) [tex]X<0[/tex]; (2) [tex]0<X<a[/tex]; (3) [tex]a<X<B[/tex]; and (4) [tex]B<X[/tex].
In case (1), both [tex]a-X>0[/tex] and [tex]B-X>0[/tex], so [tex]k(a-X)(B-X)>0[/tex], which means [tex]X(t)[/tex] is increasing and converging to [tex]X=0[/tex] as [tex]t\to\infty[/tex].
In case (2), [tex]a-X>0[/tex] and [tex]B-X>0[/tex] again, so [tex]k(a-X)(B-X)>0[/tex] as well, so [tex]X(t)[/tex] is increasing again and converging to [tex]X=a[/tex] from below.
In case (3), [tex]a-X<0[/tex] and [tex]B-X>0[/tex], so [tex]k(a-X)(B-X)<0[/tex], which means [tex]X(t)[/tex] is decreasing and converging to [tex]X=a[/tex] from above as [tex]t\to\infty[/tex].
Finally, in case (4), both [tex]a-X<0[/tex] and [tex]B-X<0[/tex], so tha t[tex]k(a-X)(B-X)>0[/tex], and so [tex]X(t)[/tex] is increasing and diverging as [tex]t\to\infty[/tex].
So a simplified phase portrait for the solution [tex]X(t)[/tex] might look something like
[tex]\begin{matrix}&\uparrow\\X=B&-\\&\downarrow\\X=a&-\\&\uparrow\\X=0&-\\&\uparrow\end{matrix}[/tex]
where the vertical axis represents [tex]X(t)[/tex].
(b) If [tex]a=B[/tex], then [tex]\dfrac{\mathrm dX}{\mathrm dt}=k(a-X)^2[/tex], which has the phase portrait
[tex]\begin{matrix}&\uparrow\\X=a&-\\&\uparrow\\X=0&-\\&\uparrow\end{matrix}[/tex]
so that [tex]X(t)\to\infty[/tex] when [tex]X>a[/tex]; [tex]X(t)\to a[/tex] from below when [tex]0<X<a[/tex]; and [tex]X\to0[/tex] from below as [tex]t\to\infty[/tex] in either case of [tex]X(0)>a[/tex] or [tex]X(0)<a[/tex].
(c) With [tex]k=1[/tex] and [tex]a=B[/tex], we have the separable ODE
[tex]\dfrac{\mathrm dX}{\mathrm dt}=(a-X)^2[/tex]
[tex]\dfrac{\mathrm dX}{(a-X)^2}=\mathrm dt[/tex]
[tex]\displaystyle\int\frac{\mathrm dX}{(a-X)^2}=\int\mathrm dt[/tex]
[tex]\dfrac1{a-X}=t+C[/tex]
[tex]a-X=\dfrac1{t+C}[/tex]
[tex]X=a+\dfrac1{t+C}[/tex]
With the initial value [tex]X(0)=\dfrac a2[/tex], we have
[tex]\dfrac a2=a+\dfrac1C\implies C=-\dfrac2a[/tex]
With [tex]X(0)=2a[/tex], we would get
[tex]2a=a+\dfrac1C\implies C=\dfrac1a[/tex]
In both cases, we're assuming that [tex]X(0)>a[/tex], since we are given that [tex]0<a<B[/tex] from the start. In part (b), we found that [tex]X(t)\to\infty[/tex] as [tex]t\to\infty[/tex] (regardless of whether [tex]X(0)[/tex] is smaller or larger than [tex]a[/tex], in fact), so we only need to verify that the solution we found also conforms to this trend. We have
[tex]\displaystyle\lim_{t\to\infty}X(t)=\lim_{t\to\infty}\left(a+\dfrac1{t+C}\right)=a[/tex]
which confirms the conclusion of the phase portrait.
(a) We're given that [tex]0<a<B[/tex]. We have four cases to consider: (1) [tex]X<0[/tex]; (2) [tex]0<X<a[/tex]; (3) [tex]a<X<B[/tex]; and (4) [tex]B<X[/tex].
In case (1), both [tex]a-X>0[/tex] and [tex]B-X>0[/tex], so [tex]k(a-X)(B-X)>0[/tex], which means [tex]X(t)[/tex] is increasing and converging to [tex]X=0[/tex] as [tex]t\to\infty[/tex].
In case (2), [tex]a-X>0[/tex] and [tex]B-X>0[/tex] again, so [tex]k(a-X)(B-X)>0[/tex] as well, so [tex]X(t)[/tex] is increasing again and converging to [tex]X=a[/tex] from below.
In case (3), [tex]a-X<0[/tex] and [tex]B-X>0[/tex], so [tex]k(a-X)(B-X)<0[/tex], which means [tex]X(t)[/tex] is decreasing and converging to [tex]X=a[/tex] from above as [tex]t\to\infty[/tex].
Finally, in case (4), both [tex]a-X<0[/tex] and [tex]B-X<0[/tex], so tha t[tex]k(a-X)(B-X)>0[/tex], and so [tex]X(t)[/tex] is increasing and diverging as [tex]t\to\infty[/tex].
So a simplified phase portrait for the solution [tex]X(t)[/tex] might look something like
[tex]\begin{matrix}&\uparrow\\X=B&-\\&\downarrow\\X=a&-\\&\uparrow\\X=0&-\\&\uparrow\end{matrix}[/tex]
where the vertical axis represents [tex]X(t)[/tex].
(b) If [tex]a=B[/tex], then [tex]\dfrac{\mathrm dX}{\mathrm dt}=k(a-X)^2[/tex], which has the phase portrait
[tex]\begin{matrix}&\uparrow\\X=a&-\\&\uparrow\\X=0&-\\&\uparrow\end{matrix}[/tex]
so that [tex]X(t)\to\infty[/tex] when [tex]X>a[/tex]; [tex]X(t)\to a[/tex] from below when [tex]0<X<a[/tex]; and [tex]X\to0[/tex] from below as [tex]t\to\infty[/tex] in either case of [tex]X(0)>a[/tex] or [tex]X(0)<a[/tex].
(c) With [tex]k=1[/tex] and [tex]a=B[/tex], we have the separable ODE
[tex]\dfrac{\mathrm dX}{\mathrm dt}=(a-X)^2[/tex]
[tex]\dfrac{\mathrm dX}{(a-X)^2}=\mathrm dt[/tex]
[tex]\displaystyle\int\frac{\mathrm dX}{(a-X)^2}=\int\mathrm dt[/tex]
[tex]\dfrac1{a-X}=t+C[/tex]
[tex]a-X=\dfrac1{t+C}[/tex]
[tex]X=a+\dfrac1{t+C}[/tex]
With the initial value [tex]X(0)=\dfrac a2[/tex], we have
[tex]\dfrac a2=a+\dfrac1C\implies C=-\dfrac2a[/tex]
With [tex]X(0)=2a[/tex], we would get
[tex]2a=a+\dfrac1C\implies C=\dfrac1a[/tex]
In both cases, we're assuming that [tex]X(0)>a[/tex], since we are given that [tex]0<a<B[/tex] from the start. In part (b), we found that [tex]X(t)\to\infty[/tex] as [tex]t\to\infty[/tex] (regardless of whether [tex]X(0)[/tex] is smaller or larger than [tex]a[/tex], in fact), so we only need to verify that the solution we found also conforms to this trend. We have
[tex]\displaystyle\lim_{t\to\infty}X(t)=\lim_{t\to\infty}\left(a+\dfrac1{t+C}\right)=a[/tex]
which confirms the conclusion of the phase portrait.