Respuesta :
If you have a TI-83 plus or higher, you could create a matrix and use rref to get the solution.
Let's begin with eliminating the y's in equations 1 and 3, then in equations 2 and 3:
[tex]-3x-4y-3z=-7 [/tex] times -1⇒ [tex]3x+4y+3z=7 [/tex]
[tex]5x-2y+5z=9[/tex] times 2⇒ [tex]10x-4y+10z=18[/tex]
ADD the two equations: 13x + 13z = 25
[tex]2x-6y+2z=3[/tex] times -1⇒[tex]-2x+6y-2z=-3[/tex]
[tex]5x-2y+5z=9[/tex] times 3⇒ [tex]15x-6y+15z=27[/tex]
ADD the two equations: 13x+13z=24
Subtract the two resulting equations and you get 0 = 1 which is false so there is no solution for the system.
Let's begin with eliminating the y's in equations 1 and 3, then in equations 2 and 3:
[tex]-3x-4y-3z=-7 [/tex] times -1⇒ [tex]3x+4y+3z=7 [/tex]
[tex]5x-2y+5z=9[/tex] times 2⇒ [tex]10x-4y+10z=18[/tex]
ADD the two equations: 13x + 13z = 25
[tex]2x-6y+2z=3[/tex] times -1⇒[tex]-2x+6y-2z=-3[/tex]
[tex]5x-2y+5z=9[/tex] times 3⇒ [tex]15x-6y+15z=27[/tex]
ADD the two equations: 13x+13z=24
Subtract the two resulting equations and you get 0 = 1 which is false so there is no solution for the system.
Answer:
Given equations have no solution
Step-by-step explanation:
Given -
Three set of equations -
[tex]-3x-4y-3z=-7\\2x-6y+2z=3\\5x-2y+5z=9[/tex]
We will now equate "x" in the first equation in terms of "y" and "Z" and put it in second equation -
[tex]-3x-4y-3z=-7\\x = \frac{1}{3} (-4y -3z+7)\\\frac{2}{3}(-4y -3z+7) -6y+2z=3\\-8.667 y = -1.667\\y = 0.192\\[/tex]
We will substitute the value of y in the under given equation-
[tex]x = \frac{1}{3} (-4y -3z+7)\\x = \frac{1}{3} (-4*0.192 -3z+7)\\x= 2.077-z[/tex]
substituting the derived values in last equation, we get -
[tex]5x-2y+5z=9\\5(2.077-z)-2(0.192)+5z=9\\10.385-5z-0.384+5z=9\\0=-1[/tex]
Hence, the given equations have no solution