Respuesta :
12^2 +b^2 = 20^2 because of the Pythagorean theorem
144 + b^2 =400
B^2 =256
B=16
144 + b^2 =400
B^2 =256
B=16
Answer:
Option B : 16
Step-by-step explanation:
Refer the attached file
Given :
In ΔABC , AB = b , BC = 12 , AC= 20
To Find : value of b i.e. Length of AB
Solution:
Since we are given a right angles triangle so we can use Pythagoras theorem i.e.
[tex](Hypotenuse)^{2} =(Perpendicular)^{2} +(Base)^{2} [/tex] ---(a)
Now in a given triangle AB is Perpendicular , BC is Base and AC is Hypotenuse.
So, putting values in (a)
[tex](AC)^{2} =(AB)^{2} +(BC)^{2} [/tex]
[tex](20)^{2} =(b)^{2} +(12)^{2} [/tex]
[tex]400 =(AB)^{2} +144 [/tex]
[tex]400-144 =(b)^{2} [/tex]
[tex]256 =(b)^{2} [/tex]
[tex]\sqrt{256} =b[/tex]
[tex]16=b[/tex]
Thus the value of b is 6
Hence Option B is correct.