Respuesta :

12^2 +b^2 = 20^2 because of the Pythagorean theorem
144 + b^2 =400
B^2 =256
B=16

Answer:

Option B : 16

Step-by-step explanation:

Refer the attached file

Given :

In ΔABC , AB = b , BC = 12  , AC= 20

To Find : value of b i.e. Length of AB

Solution:

Since we are given a right angles triangle so we can use Pythagoras theorem i.e.

[tex](Hypotenuse)^{2} =(Perpendicular)^{2} +(Base)^{2} [/tex]    ---(a)

Now in a given triangle AB is Perpendicular , BC is Base and AC is Hypotenuse.

So, putting values in (a)

[tex](AC)^{2} =(AB)^{2} +(BC)^{2} [/tex]

[tex](20)^{2} =(b)^{2} +(12)^{2} [/tex]

[tex]400 =(AB)^{2} +144 [/tex]

[tex]400-144  =(b)^{2} [/tex]

[tex]256 =(b)^{2} [/tex]

[tex]\sqrt{256} =b[/tex]

[tex]16=b[/tex]

Thus the value of b is 6

Hence Option B is correct.


Ver imagen Phoca