Respuesta :
let y = sec^2 ( pi x )
y' = 2 sec ( pi x ) sec( pi x ) tan ( pi x ) pi
y' = 2pi sec^2 ( pi x ) tan ( pi x )
y''= 2pi sec^2 ( pi x ) * sec^2 ( pi x ) * pi + 2pi tan ( pi x ) * 2pi sec^2 ( pi x ) tan ( pi x )
y'' = 2 pi^2 sec^4 ( pi x ) + 4 pi^2 sec^2 ( pi x ) tan^2 ( pi x )
y' = 2 sec ( pi x ) sec( pi x ) tan ( pi x ) pi
y' = 2pi sec^2 ( pi x ) tan ( pi x )
y''= 2pi sec^2 ( pi x ) * sec^2 ( pi x ) * pi + 2pi tan ( pi x ) * 2pi sec^2 ( pi x ) tan ( pi x )
y'' = 2 pi^2 sec^4 ( pi x ) + 4 pi^2 sec^2 ( pi x ) tan^2 ( pi x )
first derivative is 2 pi tan(pi x) sec^2 (pi x)
second derivative looks really messy!
using the Product rule :-
= 2 pi tan(pi x) * 2pi tan (pi x) sec^2 (pix)+sec^2(pi x) * 2 pi^2 sec*2 ( pi x)
= 4 pi^2 tan^2 (pi x) sec^2 (pi x) + 2 pi^2 sec^4 (pi x)
= 2 pi^2 sec^2 (pi x) [ 2 tan^2 (pi x) + sec^2(pi x)]
Phew!
second derivative looks really messy!
using the Product rule :-
= 2 pi tan(pi x) * 2pi tan (pi x) sec^2 (pix)+sec^2(pi x) * 2 pi^2 sec*2 ( pi x)
= 4 pi^2 tan^2 (pi x) sec^2 (pi x) + 2 pi^2 sec^4 (pi x)
= 2 pi^2 sec^2 (pi x) [ 2 tan^2 (pi x) + sec^2(pi x)]
Phew!
