Respuesta :
Answer:
The piecewise-defined function to model the salesperson's total monthly salary (in $) is,
[tex]f(x)=\begin{cases}2000 & \text{ if } x\leq 40,000 \\2000+0.05(x-40000) & \text{ if } x>40000\end{cases}[/tex]
Step-by-step explanation:
It is given that the salesperson makes a base salary of $2000 a month. Once he reaches $40,000 in total sales, he earns an additional 5% commission on the amount in sales over $40,000.
Let the x represents the amount of sales and f(x) represents the salary of salesperson.
It means till the sale of $40,000, the salary of the salesperson is constant, i.e., $2000.
[tex]f(x)=2000[/tex] for [tex]x\leq 40,000[/tex]
He will get commision of 5% on the amount in sales over $40,000.
[tex]f(x)=2000+\frac{5}{100}(x-40000)[/tex] for [tex]x>40,000[/tex]
Therefore the piecewise-defined function to model the salesperson's total monthly salary (in $) is,
[tex]f(x)=\begin{cases}2000 & \text{ if } x\leq 40,000 \\2000+0.05(x-40000) & \text{ if } x>40000\end{cases}[/tex]
The piecewise-defined function to model the salesperson's total monthly salary (in $) as a functionis [tex]\boxed{f\left( x \right)=\left\{\begin{gathered}2000{\text{ if }}x \leqslant 40000 \hfill\\2000 + 0.05\left( {x - 40000} \right){\text{ if }}x > 40000 \hfill\\\end{gathered}\right.}[/tex].
Further explanation:
The piecewise defined function is defined as a function that takes different values in different interval. It is defined on the sequence of intervals.
Given:
The base salary is [tex]\$ 2000[/tex].
He will earn [tex]5\%[/tex] additional commission on the amount sales over [tex]\$ 40000[/tex].
Explanation:
The base salary of a salesperson in a month is $2000.
If the salesperson reaches to $40000, he will earns 5% additional commission on the amount sales over [tex]\$ 40000[/tex].
The person get [tex]\$ 2000[/tex] if sale less than [tex]\$ 40000[/tex].
[tex]f\left( x \right) =2000{\text{ for }}x \leqslant 40000[/tex].
The value of the function for less than $40000 is [tex]f\left( x \right)=2000[/tex].
If he sales over 40000 the amount he will get can be expressed as follows,
[tex]f\left( x \right)=2000+\dfrac{5}{{100}}\left( {x - 40000} \right)[/tex] for[tex]x > 40000.[/tex]
The value of the function for greater than 40000 is [tex]f\left( x \right)=2000 + \dfrac{5}{{100}}\left({x - 40000} \right)[/tex].
The piecewise-defined function to model the salesperson's total monthly salary (in $) as a functionis [tex]\boxed{f\left( x \right)=\left\{\begin{gathered}2000{\text{if }}x \leqslant 40000\hfill\\2000 + 0.05\left( {x - 40000}\right){\text{if }}x > 40000 \hfill \\\end{gathered}\right.}[/tex]
Learn more:
1. Learn more about inverse of the functionhttps://brainly.com/question/1632445.
2. Learn more about equation of circle brainly.com/question/1506955.
3. Learn more about range and domain of the function https://brainly.com/question/3412497
Answer details:
Grade: High School
Subject: Mathematics
Chapter: Linear Equation
Keywords: solving equation, inverse operation, isolate, variable, addition property, good guess, solution, order of operations, reverse order, two solution, linear equation.
