Respuesta :
(f*g) (x) = (3x + 2) (x^2 + 1)
(f*g) (x) = 3x^3 + 3x + 2x^2 + 2
(f*g) (x) = 3x^3 + 2x^2 + 3x + 2
(f*g) (x) = 3x^3 + 3x + 2x^2 + 2
(f*g) (x) = 3x^3 + 2x^2 + 3x + 2
Answer: The required expression is [tex]3x^3+2x^2+3x+2.[/tex]
Step-by-step explanation: We are given the following two functions :
[tex]f(x)=3x+2\\\\g(x)=x^2+1.[/tex]
We are to find the expression equivalent to [tex](f*g)(x).[/tex]
We know that
for any two functions p(x) and q(x), we have
[tex](p*q)(x)=p(x)\times q(x).[/tex]
Therefore, we get
[tex](f*g)(x)\\\\=f(x)\times g(x)\\\\=(3x+2)(x^2+1)\\\\=x^2(3x+2)+1(3x+2)\\\\=3x^3+2x^2+3x+2.[/tex]
Thus, the required expression is [tex]3x^3+2x^2+3x+2.[/tex]
