Respuesta :

Answer : The correct answer is [tex]5.3\times 10^{-4}moles/L[/tex].

Solution : Given,

[tex]K_{sp}=2.8\times 10^{-7}[/tex]

The balanced equilibrium reaction is,

                            [tex]SrSO_4\rightleftharpoons Sr^{2+}+SO^{2-}_4[/tex]

At equilibrium                         s       s

The expression for solubility constant is,

[tex]K_{sp}=[Sr^{2+}][SO^{2-}_4][/tex]

Now put the given values in this expression, we get

[tex]2.8\times 10^{-7}=(s)(s)\\2.8\times 10^{-7}=s^2\\s=5.29\times 10^{-4}=5.3\times 10^{-4}moles/L[/tex]

Therefore, the solubility of [tex]SrSO_4[/tex] in moles/L is [tex]5.3\times 10^{-4}[/tex].

Answer: The solubility of [tex]SrSO_4[/tex] is [tex]5.3\times 10^{-4}mol/L[/tex]

Explanation:

It is given that [tex]K_{sp}[/tex] of strontium sulfate is [tex]2.8\times 10^{-7}  [/tex]

The balanced equilibrium reaction for ionization of [tex]SrSO_4[/tex] is given by:

                         [tex]SrSO_4\rightleftharpoons Sr^{2+}+SO^{2-}_4[/tex]

At equilibrium:                    s       s

The equation to calculate solubility constant is given as:

[tex]K_{sp}=[Sr^{2+}][SO^{2-}_4][/tex]

Now put the given values in above equation, we get:

[tex]2.8\times 10^{-7}=(s)(s)\\2.8\times 10^{-7}=s^2\\s=5.29\times 10^{-4}\approx 5.3\times 10^{-4}moles/L[/tex]

Therefore, the solubility of [tex]SrSO_4[/tex] is [tex]5.3\times 10^{-4}mol/L[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico