Respuesta :
You mean y = e^(rx)? Yes, there end up being two values. They should both work. Nobody said the solution had to be unique!
Use this expression for y to calculated y', then take the derivative again to get y ' ' .
y' = r e^(rx) y' ' = r^2 e^(rx)
So you have: r^2 e^(rx) - 6r e^(rx) + 2e^(rx) = 0
Since e^(rx) can never be 0, we can divide both sides by e^(rx) to get
r^2 - 6r + 2 = 0
r1 =(6-√28)/2=3-√ 7 = 0.354
r2 =(6+√28)/2=3+√ 7 = 5.646
so r = 0.354, 5.646
Use this expression for y to calculated y', then take the derivative again to get y ' ' .
y' = r e^(rx) y' ' = r^2 e^(rx)
So you have: r^2 e^(rx) - 6r e^(rx) + 2e^(rx) = 0
Since e^(rx) can never be 0, we can divide both sides by e^(rx) to get
r^2 - 6r + 2 = 0
r1 =(6-√28)/2=3-√ 7 = 0.354
r2 =(6+√28)/2=3+√ 7 = 5.646
so r = 0.354, 5.646
The values of [tex]r[/tex] is [tex]\boxed{r = 3 - \sqrt7 }[/tex] and [tex]\boxed{r = 3 + \sqrt 7 }.[/tex]
Further explanation:
Given:
The function is [tex]y = {e^{rx}}.[/tex]
The differential equation is [tex]y'' - 6y' + 2y = 0\,\,\,\,\,or\,\,\,\,\dfrac{{{d^2}y}}{{d{x^2}}} - 6\dfrac{{dy}}{{dx}} + 2y = 0[/tex]
Explanation:
The given function can be expressed as follows,
[tex]y = {e^{rx}}[/tex]
Differentiate the above equation with respect to [tex]x[/tex].
[tex]\begin{aligned}\frac{{dy}}{{dx}} &= \frac{d}{{dx}}\left( {{e^{rx}}} \right)\\&= {e^{rx}} \times \frac{d}{{dx}}\left( {rx} \right)\\&= {e^{rx}} \times r\\&= r{e^{rx}}\\\end{aligned}[/tex]
Again differentiate with respect to [tex]x[/tex].
[tex]\begin{aligned}\frac{{{d^2}y}}{{d{x^2}}} &= \frac{d}{{dx}}\left( {r{e^{rx}}} \right)\\&= r\frac{d}{{dx}}\left( {{e^{rx}}} \right)\\&=r\times {e^{rx}} \times\frac{d}{{dx}}\left( {rx} \right)\\&= {r^2}{e^{rx}}\\\end{aligned}[/tex]
Now solve the differential equation.
[tex]\begin{aligned}y'' - 6y' + 2y &= 0\\{r^2}{e^{rx}} - 6r{e^{rx}} + 2{e^{rx}} &= 0\\{e^{rx}}\left( {{r^2} - 6r + 2} \right) &= 0\\{r^2} - 6r + 2 &= 0\\\end{aligned}[/tex]
Solve the quadratic equation [tex]{r^2} - 6r + 2 = 0.[/tex]
[tex]\begin{aligned}D&= {b^2} - 4ac\\&={\left( { - 6} \right)^2} - 4\left( 1 \right)\left( 2 \right)\\&= 36 - 8\\&= 28\\\end{aligned}[/tex]
The value of [tex]r[/tex] can be obtained as follows,
[tex]\begin{aligned}r&= \frac{{ - b \pm \sqrt D }}{{2a}}\\r&=\frac{{ - \left( { - 6} \right) \pm \sqrt {28} }}{{2 \times 1}} \\ r &= \frac{{6 \pm 2\sqrt7 }}{2}\\r&= 3 \pm \sqrt7\\r&= 3 - \sqrt 7 \,\,\,\,\,\,\,or\,\,\,\,\,\,\,r = 3 + \sqrt7 \\\end{aligned}[/tex]
The values of [tex]r[/tex] is [tex]\boxed{r = 3 - \sqrt7 }[/tex] and [tex]\boxed{r = 3 + \sqrt 7 }.[/tex]
Learn more:
1. Learn more about inverse of the functionhttps://brainly.com/question/1632445.
2. Learn more about equation of circle brainly.com/question/1506955.
3. Learn more about range and domain of the function https://brainly.com/question/3412497
Answer details:
Grade: High School
Subject: Mathematics
Chapter: Derivatives
Keywords: Derivative, value of x, function, differentiate, minimum value, dy, compute, given value of [tex]x, y=6x, x=4, x=1[/tex]