Respuesta :
Given:
p = 90% = 0.9, the probability that an adult has had chickenpox by age 50.
Therefore,
q = 1 - p = 0.1, the probability that an adult has not had chickenpox by age 50.
Part (a)
Because there are only two answers: "Yes" or "No" to whether an adult has had chickenpox by age 50, the use of the binomial distribution is justified.
Part (b):
Calculate the probability that exactly 97 out of 100 sampled adults have had chickenpox.
The probability is
P₁ = ₁₀₀C₉₇ (0.9)⁹⁷ (0.1)³ = 0.0059
Answer: 0.006 or 0.6%
Part (c)
Calculate the probability that exactly 3 adults have not had chickenpox.
Theis probability is equal to
P₂ = 1 - P₁ = 1 - 0.006 = 0.994
Answer: 0.994 or 99.4%
Part (d)
Calculate the probability that at least 1 out of 10 randomly selected adults have had chickenpox.
The probability is
P₃ = ₁₀C₀ (0.9)⁰ (0.1)¹⁰ + ₁₀C₁ (0.9)¹ (0.1)⁹ = 10⁻¹⁰ + 10⁻⁹ = 10⁻⁹ ≈ 0
Answer: 0
Part (e)
Calculate the probability that at most 3 out of 10 randomly selected adults have not had chickenpox.
The probability is
P₄ = 1 - [₁₀C₀ (0.9)⁰(0.1)¹⁰ + ₁₀C₁ (0.9)¹(0.1)⁹ + ₁₀C₂ (0.9)²(0.1)⁸ + ₁₀C₃ (0.9)³(0.1)⁷]
= 1 - (10⁻¹⁰ + 9 x 10⁻⁹ + 3.645 x 10⁻⁷ + 8.748 x 10⁻⁶)
= 1
Answer: 1.0 or 100%
p = 90% = 0.9, the probability that an adult has had chickenpox by age 50.
Therefore,
q = 1 - p = 0.1, the probability that an adult has not had chickenpox by age 50.
Part (a)
Because there are only two answers: "Yes" or "No" to whether an adult has had chickenpox by age 50, the use of the binomial distribution is justified.
Part (b):
Calculate the probability that exactly 97 out of 100 sampled adults have had chickenpox.
The probability is
P₁ = ₁₀₀C₉₇ (0.9)⁹⁷ (0.1)³ = 0.0059
Answer: 0.006 or 0.6%
Part (c)
Calculate the probability that exactly 3 adults have not had chickenpox.
Theis probability is equal to
P₂ = 1 - P₁ = 1 - 0.006 = 0.994
Answer: 0.994 or 99.4%
Part (d)
Calculate the probability that at least 1 out of 10 randomly selected adults have had chickenpox.
The probability is
P₃ = ₁₀C₀ (0.9)⁰ (0.1)¹⁰ + ₁₀C₁ (0.9)¹ (0.1)⁹ = 10⁻¹⁰ + 10⁻⁹ = 10⁻⁹ ≈ 0
Answer: 0
Part (e)
Calculate the probability that at most 3 out of 10 randomly selected adults have not had chickenpox.
The probability is
P₄ = 1 - [₁₀C₀ (0.9)⁰(0.1)¹⁰ + ₁₀C₁ (0.9)¹(0.1)⁹ + ₁₀C₂ (0.9)²(0.1)⁸ + ₁₀C₃ (0.9)³(0.1)⁷]
= 1 - (10⁻¹⁰ + 9 x 10⁻⁹ + 3.645 x 10⁻⁷ + 8.748 x 10⁻⁶)
= 1
Answer: 1.0 or 100%
The correct answers are:
A) yes; B) 0.0059; C) 0.0059; D) 1; E) 0.9872.
Explanation:
A) A binomial experiment is one in which the experiment consists of identical trials; each trial results in one of two outcomes, called success and failure; the probability of success remains the same from trial to trial; and the trials are independent.
All of these criteria fit this experiment.
B) The formula for the probability of a binomial experiment is:
[tex] _nC_r\times(p^r)(1-p)^{n-r} [/tex]
where n is the number of trials, r is the number of successes, and p is the probability of success.
In this problem, p = 0.9.
For part B, n = 100 and r = 97:
[tex] _{100}C_{97}(0.9)^{97}(1-0.9)^3
\\=\frac{100!}{97!3!}\times (0.9)^{97}(0.1)^3
\\
\\=161700(0.9)^{0.97}(0.1)^3=0.00589\approx 0.0059 [/tex]
C) We are changing the probability of success this time. Since 90% of people have had chicken pox, then 100%-90% = 1-0.9 = 0.1 have not had chicken pox. For part C, n = 100, r = 3, and p = 0.1:
[tex] _{100}C_3(0.1)^3(1-0.1)^{100-3}
\\
\\=_{100}C_3(0.1)^3(0.9)^{97}
\\=\frac{100!}{97!3!}\times (0.1)^3(0.9)^{97}
\\
\\=161700(0.1)^3(0.9)^{97}=0.00589\approx 0.0059 [/tex]
D) For this part, we want to know the probability that at least 1 person has contracted chicken pox. For this part, p = 0.9, n = 10 and r = 0. We will then subtract this from 1; this will first give us the probability that none of the 10 contracted chicken pox, then subtracting from 1 means that 1 or more people did:
[tex] 1-(_{10}C_0(0.9)^0(1-0.9)^{10-0})
\\
\\=1-(\frac{10!}{0!10!}\times (0.9)^0(0.1)^{10})
\\
\\=1-(1\times 1\times (0.1)^{10})= 1-0 = 1 [/tex]
E) For this part, we find the probability that 3 people, 2 people, 1 person and 0 people have not had chicken pox. The probability p = 0.1; n = 10; and r = 3, 2, 1 and 0, respectively:
[tex] _{10}C_3(0.1)^3(1-0.1)^{10-3}+_{10}C_2(0.1)^2(1-0.1)^{10-2}+
_{10}C_1(0.1)^1(1-0.1)^{10-1}+_{10}C_0(0.1)^0(1-0.1)^{10-0}
\\
\\=_{10}C_3(0.1)^3(0.9)^7+_{10}C_2(0.1)^2(0.9)^8+_{10}C_1(0.1)^1(0.9)^9+
_{10}C_0(0.1)^1(0.9)^{10}
\\
\\120(0.1)^3(0.9)^7+45(0.1)^2(0.9)^8+10(0.1)^1(0.9)^9+1(0.1)^0(0.9)^{10}
\\
\\0.057395628+0.1937102445+0.387420489+0.3486784401
\\
\\=0.9872 [/tex]