Respuesta :
we have
[tex]y=16x^{2} +1[/tex]
Step 1
exchange variables x for y and y for x
[tex]x=16y^{2} +1[/tex]
Step 2
Isolate the variable y
Subtract [tex]1[/tex] both sides
[tex]x-1=16y^{2}+1-1[/tex]
[tex]16y^{2}=x-1[/tex]
Divide by [tex]16[/tex] both sides
[tex]16y^{2}/16=(x-1)/16[/tex]
[tex]y^{2}=\frac{x-1}{16}[/tex]
Square root both sides
[tex]y=(+/-)\sqrt{\frac{x-1}{16}}[/tex]
[tex]y=(+/-)\frac{\sqrt{x-1}}{4}[/tex]
Step 3
Let
[tex]f(x)^{-1}=y[/tex]
[tex]f(x)^{-1}=(+/-)\frac{\sqrt{x-1}}{4}[/tex]
therefore
the answer is
The inverse is equal to
[tex]f(x)^{-1}=(+/-)\frac{\sqrt{x-1}}{4}[/tex]
The inverse of the function is y = \sqrt{x+1/16}
Inverse of functions
Given the expression
y = 16x² + 1
We see to find the inverse of the function
Replace y with x to have;
x = 16y² - 1
Make y the subject of the formula
16y² = x + 1
Divide both sides by 16
16y²/16 = x+1/16
y² = x+1/16
Take the square root of both sides
y = \sqrt{x+1/16}
Hence the inverse of the function is y = \sqrt{x+1/16}
Learn more on inverse of function here: https://brainly.com/question/3100063
