Respuesta :

we have

[tex]y=16x^{2} +1[/tex]

Step 1

exchange variables x for y and y for x

[tex]x=16y^{2} +1[/tex]

Step 2

Isolate the variable y

Subtract [tex]1[/tex] both sides

[tex]x-1=16y^{2}+1-1[/tex]

[tex]16y^{2}=x-1[/tex]

Divide by [tex]16[/tex] both sides

[tex]16y^{2}/16=(x-1)/16[/tex]

[tex]y^{2}=\frac{x-1}{16}[/tex]

Square root both sides

[tex]y=(+/-)\sqrt{\frac{x-1}{16}}[/tex]

[tex]y=(+/-)\frac{\sqrt{x-1}}{4}[/tex]

Step 3

Let

[tex]f(x)^{-1}=y[/tex]

[tex]f(x)^{-1}=(+/-)\frac{\sqrt{x-1}}{4}[/tex]

therefore

the answer is

The inverse is equal to

[tex]f(x)^{-1}=(+/-)\frac{\sqrt{x-1}}{4}[/tex]

The inverse of the function is y = \sqrt{x+1/16}

Inverse of functions

Given the expression

y = 16x² + 1

We see to find the inverse of the function

Replace y with x to have;

x = 16y² - 1

Make y the subject of the formula

16y² = x + 1

Divide both sides by 16

16y²/16 = x+1/16

y² = x+1/16

Take the square root of both sides

y = \sqrt{x+1/16}

Hence the inverse of the function is y = \sqrt{x+1/16}

Learn more on inverse of function here: https://brainly.com/question/3100063

RELAXING NOICE
Relax