Respuesta :
[tex]\sin{(A - B)} \equiv \sin{A}\cos{B} - \cos{A}\sin{B} \\\\
\therefore \sin{(90 - x)}\\
= \sin{(90)}\cos{(x)} - \cos{(90)}\sin{(x)} \\
= (1)\cos{(x)} - (0)\sin{(x)} \\
= \cos{x} - 0 \\
= \cos{x} \\
= \frac{1}{3}
[/tex]
[tex]90а= \frac{ \pi }{2} \\ sin(90а-x)=sin (\frac{ \pi }{2}-x)=cos (x) \\ cos(x)= \frac{1}{3} \\ sin(x)= \frac{1}{3} \approx0.33333 \\ x=19а[/tex]